Data Science In Telecom



  data science in telecom: Social Network Analysis in Telecommunications Carlos Andre Reis Pinheiro, 2011-05-09 A timely look at effective use of social network analysis within the telecommunications industry to boost customer relationships The key to any successful company is the relationship that it builds with its customers. This book shows how social network analysis, analytics, and marketing knowledge can be combined to create a positive customer experience within the telecommunications industry. Reveals how telecommunications companies can effectively enhance their relationships with customers Provides the groundwork for defining social network analysis Defines the tools that can be used to address social network problems A must-read for any professionals eager to distinguish their products in the marketplace, this book shows you how to get it done right, with social network analysis.
  data science in telecom: Web Warehousing and Knowledge Management Rob Mattison, 1999 This text explains the applications, architecture, and implementation issues of Web data warehousing. The book also features the tools that people use to find patterns within a database stored to the Internet which can be shared with suppliers.
  data science in telecom: Internet of Things and Data Analytics Handbook Hwaiyu Geng, 2016-12-15 This book examines the Internet of Things (IoT) and Data Analytics from a technical, application, and business point of view. Internet of Things and Data Analytics Handbook describes essential technical knowledge, building blocks, processes, design principles, implementation, and marketing for IoT projects. It provides readers with knowledge in planning, designing, and implementing IoT projects. The book is written by experts on the subject matter, including international experts from nine countries in the consumer and enterprise fields of IoT. The text starts with an overview and anatomy of IoT, ecosystem of IoT, communication protocols, networking, and available hardware, both present and future applications and transformations, and business models. The text also addresses big data analytics, machine learning, cloud computing, and consideration of sustainability that are essential to be both socially responsible and successful. Design and implementation processes are illustrated with best practices and case studies in action. In addition, the book: Examines cloud computing, data analytics, and sustainability and how they relate to IoT overs the scope of consumer, government, and enterprise applications Includes best practices, business model, and real-world case studies Hwaiyu Geng, P.E., is a consultant with Amica Research (www.AmicaResearch.org, Palo Alto, California), promoting green planning, design, and construction projects. He has had over 40 years of manufacturing and management experience, working with Westinghouse, Applied Materials, Hewlett Packard, and Intel on multi-million high-tech projects. He has written and presented numerous technical papers at international conferences. Mr. Geng, a patent holder, is also the editor/author of Data Center Handbook (Wiley, 2015).
  data science in telecom: Data Science Pallavi Chavan, Parikshit N. Mahalle, Ramchandra Mangrulkar, Idongesit Williams, 2022-07 The proposed book covers the topic of data science in a very comprehensive manner and synthesizes both fundamental and advanced topics of a research area that has now reached maturity. The book starts from the basic concepts of data science; it highlights the types of data, its use and its importance, followed by discussion on a wide range of applications of data science and widely used techniques in data science. Key features: provides an internationally respected collection of scientific research methods, technologies and applications in the area of data science, presents predictive outcomes by applying data science techniques on real life applications, provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods, and gives the reader variety of intelligent applications that can be designed using data science and its allied fields. The book is aimed primarily at advanced undergraduates and graduates studying machine learning and data science. Researchers and professionals will also find this book useful--
  data science in telecom: Data Mining and Machine Learning Applications Rohit Raja, Kapil Kumar Nagwanshi, Sandeep Kumar, K. Ramya Laxmi, 2022-03-02 DATA MINING AND MACHINE LEARNING APPLICATIONS The book elaborates in detail on the current needs of data mining and machine learning and promotes mutual understanding among research in different disciplines, thus facilitating research development and collaboration. Data, the latest currency of today’s world, is the new gold. In this new form of gold, the most beautiful jewels are data analytics and machine learning. Data mining and machine learning are considered interdisciplinary fields. Data mining is a subset of data analytics and machine learning involves the use of algorithms that automatically improve through experience based on data. Massive datasets can be classified and clustered to obtain accurate results. The most common technologies used include classification and clustering methods. Accuracy and error rates are calculated for regression and classification and clustering to find actual results through algorithms like support vector machines and neural networks with forward and backward propagation. Applications include fraud detection, image processing, medical diagnosis, weather prediction, e-commerce and so forth. The book features: A review of the state-of-the-art in data mining and machine learning, A review and description of the learning methods in human-computer interaction, Implementation strategies and future research directions used to meet the design and application requirements of several modern and real-time applications for a long time, The scope and implementation of a majority of data mining and machine learning strategies. A discussion of real-time problems. Audience Industry and academic researchers, scientists, and engineers in information technology, data science and machine and deep learning, as well as artificial intelligence more broadly.
  data science in telecom: IoT Machine Learning Applications in Telecom, Energy, and Agriculture Puneet Mathur, 2020-05-09 Apply machine learning using the Internet of Things (IoT) in the agriculture, telecom, and energy domains with case studies. This book begins by covering how to set up the software and hardware components including the various sensors to implement the case studies in Python. The case study section starts with an examination of call drop with IoT in the telecoms industry, followed by a case study on energy audit and predictive maintenance for an industrial machine, and finally covers techniques to predict cash crop failure in agribusiness. The last section covers pitfalls to avoid while implementing machine learning and IoT in these domains. After reading this book, you will know how IoT and machine learning are used in the example domains and have practical case studies to use and extend. You will be able to create enterprise-scale applications using Raspberry Pi 3 B+ and Arduino Mega 2560 with Python. What You Will Learn Implement machine learning with IoT and solve problems in the telecom, agriculture, and energy sectors with PythonSet up and use industrial-grade IoT products, such as Modbus RS485 protocol devices, in practical scenariosDevelop solutions for commercial-grade IoT or IIoT projectsImplement case studies in machine learning with IoT from scratch Who This Book Is For Raspberry Pi and Arduino enthusiasts and data science and machine learning professionals.
  data science in telecom: Intelligent Systems and Data Science Nguyen Thai-Nghe, Thanh-Nghi Do, Peter Haddawy, 2023-10-30 This two-volume set constitutes the refereed proceedings of the First International Conference on Intelligent Systems and Data Science, ISDS 2023, held in Can Tho, Vietnam, in November 2023. The 35 full papers and 13 short papers presented were thoroughly reviewed and selected from 123 submissions. They are organized in the following topical sections: ​applied intelligent systems and data science for agriculture, aquaculture, and biomedicine; big data, IoT, and cloud computing; deep learning and natural language processing; intelligent systems.
  data science in telecom: Adoption and Implementation of AI in Customer Relationship Management Singh, Surabhi, 2021-10-15 Integration of artificial intelligence (AI) into customer relationship management (CRM) automates the sales, marketing, and services in organizations. An AI-powered CRM is capable of learning from past decisions and historical patterns to score the best leads for sales. AI will also be able to predict future customer behavior. These tactics lead to better and more effective marketing strategies and increases the scope of customer services, which allow businesses to build healthier relationships with their consumer base. Adoption and Implementation of AI in Customer Relationship Management is a critical reference source that informs readers about the transformations that AI-powered CRM can bring to organizations in order to build better services that create more productive relationships. This book uses the experience of past decisions and historical patterns to discuss the ways in which AI and CRM lead to better analytics and better decisions. Discussing topics such as personalization, quality of services, and CRM in the context of diverse industries, this book is an important resource for marketers, brand managers, IT specialists, sales specialists, managers, students, researchers, professors, academicians, and stakeholders.
  data science in telecom: Data Science: New Issues, Challenges and Applications Gintautas Dzemyda, Jolita Bernatavičienė, Janusz Kacprzyk, 2020-02-13 This book contains 16 chapters by researchers working in various fields of data science. They focus on theory and applications in language technologies, optimization, computational thinking, intelligent decision support systems, decomposition of signals, model-driven development methodologies, interoperability of enterprise applications, anomaly detection in financial markets, 3D virtual reality, monitoring of environmental data, convolutional neural networks, knowledge storage, data stream classification, and security in social networking. The respective papers highlight a wealth of issues in, and applications of, data science. Modern technologies allow us to store and transfer large amounts of data quickly. They can be very diverse - images, numbers, streaming, related to human behavior and physiological parameters, etc. Whether the data is just raw numbers, crude images, or will help solve current problems and predict future developments, depends on whether we can effectively process and analyze it. Data science is evolving rapidly. However, it is still a very young field. In particular, data science is concerned with visualizations, statistics, pattern recognition, neurocomputing, image analysis, machine learning, artificial intelligence, databases and data processing, data mining, big data analytics, and knowledge discovery in databases. It also has many interfaces with optimization, block chaining, cyber-social and cyber-physical systems, Internet of Things (IoT), social computing, high-performance computing, in-memory key-value stores, cloud computing, social computing, data feeds, overlay networks, cognitive computing, crowdsource analysis, log analysis, container-based virtualization, and lifetime value modeling. Again, all of these areas are highly interrelated. In addition, data science is now expanding to new fields of application: chemical engineering, biotechnology, building energy management, materials microscopy, geographic research, learning analytics, radiology, metal design, ecosystem homeostasis investigation, and many others.
  data science in telecom: Data Science and Emerging Technologies Yap Bee Wah,
  data science in telecom: The Data Science Workshop Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare, 2020-01-29 Cut through the noise and get real results with a step-by-step approach to data science Key Features Ideal for the data science beginner who is getting started for the first time A data science tutorial with step-by-step exercises and activities that help build key skills Structured to let you progress at your own pace, on your own terms Use your physical print copy to redeem free access to the online interactive edition Book DescriptionYou already know you want to learn data science, and a smarter way to learn data science is to learn by doing. The Data Science Workshop focuses on building up your practical skills so that you can understand how to develop simple machine learning models in Python or even build an advanced model for detecting potential bank frauds with effective modern data science. You'll learn from real examples that lead to real results. Throughout The Data Science Workshop, you'll take an engaging step-by-step approach to understanding data science. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend training a model using sci-kit learn. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Data Science Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your data science book. Fast-paced and direct, The Data Science Workshop is the ideal companion for data science beginners. You'll learn about machine learning algorithms like a data scientist, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead.What you will learn Find out the key differences between supervised and unsupervised learning Manipulate and analyze data using scikit-learn and pandas libraries Learn about different algorithms such as regression, classification, and clustering Discover advanced techniques to improve model ensembling and accuracy Speed up the process of creating new features with automated feature tool Simplify machine learning using open source Python packages Who this book is forOur goal at Packt is to help you be successful, in whatever it is you choose to do. The Data Science Workshop is an ideal data science tutorial for the data science beginner who is just getting started. Pick up a Workshop today and let Packt help you develop skills that stick with you for life.
  data science in telecom: Feature Engineering for Machine Learning and Data Analytics Guozhu Dong, Huan Liu, 2018-03-14 Feature engineering plays a vital role in big data analytics. Machine learning and data mining algorithms cannot work without data. Little can be achieved if there are few features to represent the underlying data objects, and the quality of results of those algorithms largely depends on the quality of the available features. Feature Engineering for Machine Learning and Data Analytics provides a comprehensive introduction to feature engineering, including feature generation, feature extraction, feature transformation, feature selection, and feature analysis and evaluation. The book presents key concepts, methods, examples, and applications, as well as chapters on feature engineering for major data types such as texts, images, sequences, time series, graphs, streaming data, software engineering data, Twitter data, and social media data. It also contains generic feature generation approaches, as well as methods for generating tried-and-tested, hand-crafted, domain-specific features. The first chapter defines the concepts of features and feature engineering, offers an overview of the book, and provides pointers to topics not covered in this book. The next six chapters are devoted to feature engineering, including feature generation for specific data types. The subsequent four chapters cover generic approaches for feature engineering, namely feature selection, feature transformation based feature engineering, deep learning based feature engineering, and pattern based feature generation and engineering. The last three chapters discuss feature engineering for social bot detection, software management, and Twitter-based applications respectively. This book can be used as a reference for data analysts, big data scientists, data preprocessing workers, project managers, project developers, prediction modelers, professors, researchers, graduate students, and upper level undergraduate students. It can also be used as the primary text for courses on feature engineering, or as a supplement for courses on machine learning, data mining, and big data analytics.
  data science in telecom: Modern Technologies for Big Data Classification and Clustering Seetha, Hari, Murty, M. Narasimha, Tripathy, B. K., 2017-07-12 Data has increased due to the growing use of web applications and communication devices. It is necessary to develop new techniques of managing data in order to ensure adequate usage. Modern Technologies for Big Data Classification and Clustering is an essential reference source for the latest scholarly research on handling large data sets with conventional data mining and provide information about the new technologies developed for the management of large data. Featuring coverage on a broad range of topics such as text and web data analytics, risk analysis, and opinion mining, this publication is ideally designed for professionals, researchers, and students seeking current research on various concepts of big data analytics.
  data science in telecom: Smart Technologies in Data Science and Communication Sanjoy Kumar Saha, Paul S. Pang, Debnath Bhattacharyya, 2021 This book features high-quality, peer-reviewed research papers presented at the Fourth International Conference on Smart Technologies in Data Science and Communication (SMART-DSC 2021), held in Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India, on 18-19 February 2021. It includes innovative and novel contributions in the areas of data analytics, communication, and soft computing.
  data science in telecom: Telecom Extreme Transformation Kaveh Hushyar, Harald Braun, Hossein Eslambolchi, 2021-07-28 The extreme transformation from a traditional Communication Service Provider (CSP) to a Digital Service Provider (DSP) status is covered in this book, specifically: Redefinition of the offerings of connectivity services to digital services; unification of legacy redundant networks into one; Redefinition of the measurements to customer-centric QoE for all digital and connectivity services; the Best-in-Industry processes and practices to ensure a sustainable network performance at a competitively operational efficiency; a Service-over-IP (SoIP) platform to enable the introduction of unified new services with a time-to-market urgency; the regulatory arrangement for content purification, to liberalize CSPs to become DSPs; an architecture for data mining and analytics; and a migration plan from a CSP to a DSP status. The book is recommended for telecom and digital service professionals planning to embark on transformational projects; telecom and technology equipment manufacturers to help with product development for a DSP status; institutional investors to evaluate and establish their investment decisions; telecom management consultants to help with a solid benchmark for transformation engagement; university students, majoring in telecommunication and technology products as a guide for career planning.
  data science in telecom: Roundtable on Data Science Postsecondary Education National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Division on Engineering and Physical Sciences, Board on Science Education, Computer Science and Telecommunications Board, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, 2020-10-02 Established in December 2016, the National Academies of Sciences, Engineering, and Medicine's Roundtable on Data Science Postsecondary Education was charged with identifying the challenges of and highlighting best practices in postsecondary data science education. Convening quarterly for 3 years, representatives from academia, industry, and government gathered with other experts from across the nation to discuss various topics under this charge. The meetings centered on four central themes: foundations of data science; data science across the postsecondary curriculum; data science across society; and ethics and data science. This publication highlights the presentations and discussions of each meeting.
  data science in telecom: Analytical Skills for AI and Data Science Daniel Vaughan, 2020-05-21 While several market-leading companies have successfully transformed their business models by following data- and AI-driven paths, the vast majority have yet to reap the benefits. How can your business and analytics units gain a competitive advantage by capturing the full potential of this predictive revolution? This practical guide presents a battle-tested end-to-end method to help you translate business decisions into tractable prescriptive solutions using data and AI as fundamental inputs. Author Daniel Vaughan shows data scientists, analytics practitioners, and others interested in using AI to transform their businesses not only how to ask the right questions but also how to generate value using modern AI technologies and decision-making principles. You’ll explore several use cases common to many enterprises, complete with examples you can apply when working to solve your own issues. Break business decisions into stages that can be tackled using different skills from the analytical toolbox Identify and embrace uncertainty in decision making and protect against common human biases Customize optimal decisions to different customers using predictive and prescriptive methods and technologies Ask business questions that create high value through AI- and data-driven technologies
  data science in telecom: Data Science with Python Rohan Chopra, Aaron England, Mohamed Noordeen Alaudeen, 2019-07-19 Leverage the power of the Python data science libraries and advanced machine learning techniques to analyse large unstructured datasets and predict the occurrence of a particular future event. Key FeaturesExplore the depths of data science, from data collection through to visualizationLearn pandas, scikit-learn, and Matplotlib in detailStudy various data science algorithms using real-world datasetsBook Description Data Science with Python begins by introducing you to data science and teaches you to install the packages you need to create a data science coding environment. You will learn three major techniques in machine learning: unsupervised learning, supervised learning, and reinforcement learning. You will also explore basic classification and regression techniques, such as support vector machines, decision trees, and logistic regression. As you make your way through chapters, you will study the basic functions, data structures, and syntax of the Python language that are used to handle large datasets with ease. You will learn about NumPy and pandas libraries for matrix calculations and data manipulation, study how to use Matplotlib to create highly customizable visualizations, and apply the boosting algorithm XGBoost to make predictions. In the concluding chapters, you will explore convolutional neural networks (CNNs), deep learning algorithms used to predict what is in an image. You will also understand how to feed human sentences to a neural network, make the model process contextual information, and create human language processing systems to predict the outcome. By the end of this book, you will be able to understand and implement any new data science algorithm and have the confidence to experiment with tools or libraries other than those covered in the book. What you will learnPre-process data to make it ready to use for machine learningCreate data visualizations with MatplotlibUse scikit-learn to perform dimension reduction using principal component analysis (PCA)Solve classification and regression problemsGet predictions using the XGBoost libraryProcess images and create machine learning models to decode them Process human language for prediction and classificationUse TensorBoard to monitor training metrics in real timeFind the best hyperparameters for your model with AutoMLWho this book is for Data Science with Python is designed for data analysts, data scientists, database engineers, and business analysts who want to move towards using Python and machine learning techniques to analyze data and predict outcomes. Basic knowledge of Python and data analytics will prove beneficial to understand the various concepts explained through this book.
  data science in telecom: ,
  data science in telecom: Building Event-Driven Microservices Adam Bellemare, 2020-07-02 Organizations today often struggle to balance business requirements with ever-increasing volumes of data. Additionally, the demand for leveraging large-scale, real-time data is growing rapidly among the most competitive digital industries. Conventional system architectures may not be up to the task. With this practical guide, you’ll learn how to leverage large-scale data usage across the business units in your organization using the principles of event-driven microservices. Author Adam Bellemare takes you through the process of building an event-driven microservice-powered organization. You’ll reconsider how data is produced, accessed, and propagated across your organization. Learn powerful yet simple patterns for unlocking the value of this data. Incorporate event-driven design and architectural principles into your own systems. And completely rethink how your organization delivers value by unlocking near-real-time access to data at scale. You’ll learn: How to leverage event-driven architectures to deliver exceptional business value The role of microservices in supporting event-driven designs Architectural patterns to ensure success both within and between teams in your organization Application patterns for developing powerful event-driven microservices Components and tooling required to get your microservice ecosystem off the ground
  data science in telecom: Machine Learning Paradigms Maria Virvou, Efthimios Alepis, George A. Tsihrintzis, Lakhmi C. Jain, 2019-03-16 This book presents recent machine learning paradigms and advances in learning analytics, an emerging research discipline concerned with the collection, advanced processing, and extraction of useful information from both educators’ and learners’ data with the goal of improving education and learning systems. In this context, internationally respected researchers present various aspects of learning analytics and selected application areas, including: • Using learning analytics to measure student engagement, to quantify the learning experience and to facilitate self-regulation; • Using learning analytics to predict student performance; • Using learning analytics to create learning materials and educational courses; and • Using learning analytics as a tool to support learners and educators in synchronous and asynchronous eLearning. The book offers a valuable asset for professors, researchers, scientists, engineers and students of all disciplines. Extensive bibliographies at the end of each chapter guide readers to probe further into their application areas of interest.
  data science in telecom: Data Science from Scratch Joel Grus, 2015-04-14 Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
  data science in telecom: Big Data Applications in the Telecommunications Industry Ouyang, Ye, Hu, Mantian, 2016-12-28 The growing presence of smart phones and smart devices has caused significant changes to wireless networks. With the ubiquity of these technologies, there is now increasingly more available data for mobile operators to utilize. Big Data Applications in the Telecommunications Industry is a comprehensive reference source for the latest scholarly material on the use of data analytics to study wireless networks and examines how these techniques can increase reliability and profitability, as well as network performance and connectivity. Featuring extensive coverage on relevant topics, such as accessibility, traffic data, and customer satisfaction, this publication is ideally designed for engineers, students, professionals, academics, and researchers seeking innovative perspectives on data science and wireless network communications.
  data science in telecom: CMOS Telecom Data Converters Angel Rodríguez-Vázquez, Fernando Medeiro, Edmond Janssens, 2004-01-31 CMOS Telecom Data Converters compiles the latest achievements regarding the design of high-speed and high-resolution data converters in deep submicron CMOS technologies. The four types of analog-to-digital converter architectures commonly found in this arena are covered, namely sigma-delta, pipeline, folding/interpolating and flash. For all these types, latest achievements regarding the solution of critical architectural and circuital issues are presented, and illustrated through IC prototypes with measured state-of-the-art performances. Some of these prototypes are conceived to be employed at the chipset of newest generation wireline modems (ADSL and ADSL+). Others are intended for wireless transceivers. Besides analog-to-digital converters, the book also covers other functions needed for communication systems, such as digital-to-analog converters, analog filters, programmable gain amplifiers, digital filters, and line drivers.
  data science in telecom: Data Science and Digital Business Fausto Pedro García Márquez, Benjamin Lev, 2019-01-04 This book combines the analytic principles of digital business and data science with business practice and big data. The interdisciplinary, contributed volume provides an interface between the main disciplines of engineering and technology and business administration. Written for managers, engineers and researchers who want to understand big data and develop new skills that are necessary in the digital business, it not only discusses the latest research, but also presents case studies demonstrating the successful application of data in the digital business.
  data science in telecom: Advanced Methodologies and Technologies in Network Architecture, Mobile Computing, and Data Analytics Khosrow-Pour, D.B.A., Mehdi, 2018-10-19 From cloud computing to data analytics, society stores vast supplies of information through wireless networks and mobile computing. As organizations are becoming increasingly more wireless, ensuring the security and seamless function of electronic gadgets while creating a strong network is imperative. Advanced Methodologies and Technologies in Network Architecture, Mobile Computing, and Data Analytics highlights the challenges associated with creating a strong network architecture in a perpetually online society. Readers will learn various methods in building a seamless mobile computing option and the most effective means of analyzing big data. This book is an important resource for information technology professionals, software developers, data analysts, graduate-level students, researchers, computer engineers, and IT specialists seeking modern information on emerging methods in data mining, information technology, and wireless networks.
  data science in telecom: High-Performance Modelling and Simulation for Big Data Applications Joanna Kołodziej, Horacio González-Vélez, 2019-03-25 This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications.
  data science in telecom: Mining Over Air: Wireless Communication Networks Analytics Ye Ouyang, Mantian Hu, Alexis Huet, Zhongyuan Li, 2018-07-27 This book introduces the concepts, applications and development of data science in the telecommunications industry by focusing on advanced machine learning and data mining methodologies in the wireless networks domain. Mining Over Air describes the problems and their solutions for wireless network performance and quality, device quality readiness and returns analytics, wireless resource usage profiling, network traffic anomaly detection, intelligence-based self-organizing networks, telecom marketing, social influence, and other important applications in the telecom industry. Written by authors who study big data analytics in wireless networks and telecommunication markets from both industrial and academic perspectives, the book targets the pain points in telecommunication networks and markets through big data. Designed for both practitioners and researchers, the book explores the intersection between the development of new engineering technology and uses data from the industry to understand consumer behavior. It combines engineering savvy with insights about human behavior. Engineers will understand how the data generated from the technology can be used to understand the consumer behavior and social scientists will get a better understanding of the data generation process.
  data science in telecom: Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics Patil, Bhushan, Vohra, Manisha, 2020-10-23 Analyzing data sets has continued to be an invaluable application for numerous industries. By combining different algorithms, technologies, and systems used to extract information from data and solve complex problems, various sectors have reached new heights and have changed our world for the better. The Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics is a collection of innovative research on the methods and applications of data analytics. While highlighting topics including artificial intelligence, data security, and information systems, this book is ideally designed for researchers, data analysts, data scientists, healthcare administrators, executives, managers, engineers, IT consultants, academicians, and students interested in the potential of data application technologies.
  data science in telecom: Advanced Data Analytics for Power Systems Ali Tajer, Samir M. Perlaza, H. Vincent Poor, 2021-04-08 Experts in data analytics and power engineering present techniques addressing the needs of modern power systems, covering theory and applications related to power system reliability, efficiency, and security. With topics spanning large-scale and distributed optimization, statistical learning, big data analytics, graph theory, and game theory, this is an essential resource for graduate students and researchers in academia and industry with backgrounds in power systems engineering, applied mathematics, and computer science.
  data science in telecom: Introduction to Statistical and Machine Learning Methods for Data Science Carlos Andre Reis Pinheiro, Mike Patetta, 2021-08-06 Boost your understanding of data science techniques to solve real-world problems Data science is an exciting, interdisciplinary field that extracts insights from data to solve business problems. This book introduces common data science techniques and methods and shows you how to apply them in real-world case studies. From data preparation and exploration to model assessment and deployment, this book describes every stage of the analytics life cycle, including a comprehensive overview of unsupervised and supervised machine learning techniques. The book guides you through the necessary steps to pick the best techniques and models and then implement those models to successfully address the original business need. No software is shown in the book, and mathematical details are kept to a minimum. This allows you to develop an understanding of the fundamentals of data science, no matter what background or experience level you have.
  data science in telecom: Integrated Data and Energy Transfer in Wireless Networks Jie Hu,
  data science in telecom: Guide to Telecommunications Technology Tamara Dean, 2002-10-14 Guide to Telecommunications Technology focuses on the technology that forms the basis for all voice and data networks. The book discusses fundamental signaling principles and explains how early telephone and computer inventions influenced modern technology. Chapters explore topics such as switching, datatransmission, broadband, wireless LANs, and network access methods. Techniques and tools involved in recognizing and addressing information security threats are also covered. The book concludes with a chapter on voice-over-network and convergence technologies, encouraging students to synthesize what they have learned about the traditionally separate fields of telephony and data technologies. Guide to Telecommunications Technology provides a solid foundation for more advanced studies in voice and data networking.
  data science in telecom: Software Engineering Trends and Techniques in Intelligent Systems Radek Silhavy, Petr Silhavy, Zdenka Prokopova, Roman Senkerik, Zuzana Kominkova Oplatkova, 2017-04-07 This book presents new approaches and methods to solve real-world problems as well as exploratory research describing novel approaches in the field of software engineering and intelligent systems. It particularly focuses on modern trends in selected fields of interest, introducing new algorithms, methods and application of intelligent systems in software engineering. The book constitutes the refereed proceedings of the Software Engineering Trends and Techniques in Intelligent Systems Section of the 6th Computer Science On-line Conference 2017 (CSOC 2017), held in April 2017.
  data science in telecom: Emerging Trends in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics Taser, Pelin Yildirim, 2021-11-05 The internet of things (IoT) has emerged to address the need for connectivity and seamless integration with other devices as well as big data platforms for analytics. However, there are challenges that IoT-based applications face including design and implementation issues; connectivity problems; data gathering, storing, and analyzing in cloud-based environments; and IoT security and privacy issues. Emerging Trends in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics is a critical reference source that provides theoretical frameworks and research findings on IoT and big data integration. Highlighting topics that include wearable sensors, machine learning, machine intelligence, and mobile computing, this book serves professionals who want to improve their understanding of the strategic role of trust at different levels of the information and knowledge society. It is therefore of most value to data scientists, computer scientists, data analysts, IT specialists, academicians, professionals, researchers, and students working in the field of information and knowledge management in various disciplines that include but are not limited to information and communication sciences, administrative sciences and management, education, sociology, computer science, etc. Moreover, the book provides insights and supports executives concerned with the management of expertise, knowledge, information, and organizational development in different types of work communities and environments.
  data science in telecom: System Design for Telecommunication Gateways Alexander Bachmutsky, 2011-06-20 System Design for Telecommunication Gateways provides a thorough review of designing telecommunication network equipment based on the latest hardware designs and software methods available on the market. Focusing on high-end efficient designs that challenge all aspects of the system architecture, this book helps readers to understand a broader view of the system design, analyze all its most critical components, and select the parts that best fit a particular application. In many cases new technology trends, potential future developments, system flexibility and capability extensions are outlined in preparation for the longevity typical for products in the industry. Key features: Combines software and hardware aspects of the system design. Defines components and services supported by open-source and commercial basic and extended software platforms, including operating systems, middleware, security, routing, management layer and more. Focuses on disruptive technologies. Provides guidelines for developing software architectures based on multi-threaded, multi-process, multi-instance, multi-core, multi-chip, multi-blade and multi-chassis designs. Covers a number of advanced high-speed interconnect and fabric interface technologies and their commercial implementations. Presents different system form factors from compact pizza-box styles to medium and large bladed systems, including IBM BladeCenter, ATCA and microTCA-based chassis. Describes different mezzanine cards, such as PMC, PrPMC, XMC, AMC and others.
  data science in telecom: Deep Space Telecommunications Systems Engineering Joseph H. Yuen, 2013-04-17 The challenge of communication in planetary exploration has been unusual. The guidance and control of spacecraft depend on reliable communication. Scientific data returned to earth are irreplaceable, or replaceable only at the cost of another mission. In deep space, communications propagation is good, relative to terrestrial communications, and there is an opportunity to press toward the mathematical limit of microwave communication. Yet the limits must be approached warily, with reliability as well as channel capacity in mind. Further, the effects of small changes in the earth's atmosphere and the interplanetary plasma have small but important effects on propagation time and hence on the measurement of distance. Advances are almost incredible. Communication capability measured in 18 bits per second at a given range rose by a factor of 10 in the 19 years from Explorer I of 1958 to Voyager of 1977. This improvement was attained through ingenious design based on the sort of penetrating analysis set forth in this book by engineers who took part in a highly detailed and amazingly successful pro gram. Careful observation and analysis have told us much about limitations on the accurate measurement of distance. It is not easy to get busy people to tell others clearly and in detail how they have solved important problems. Joseph H. Yuen and the other contribu tors to this book are to be commended for the time and care they have devoted to explicating one vital aspect of a great adventure of mankind.
  data science in telecom: Business Intelligence for Telecommunications Deepak Pareek, 2006-11-29 Bringing together market research reports, business analyst briefings, and technology references into one comprehensive volume, Business Intelligence for Telecommunications identifies those advances in both methods and technology that are being employed to inform decision-making and give companies an edge in the rapidly growing and highly co
  data science in telecom: Starting Digital Signal Processing in Telecommunication Engineering Tomasz P. Zieliński, 2021-01-29 This hands-on, laboratory driven textbook helps readers understand principles of digital signal processing (DSP) and basics of software-based digital communication, particularly software-defined networks (SDN) and software-defined radio (SDR). In the book only the most important concepts are presented. Each book chapter is an introduction to computer laboratory and is accompanied by complete laboratory exercises and ready-to-go Matlab programs with figures and comments (available at the book webpage and running also in GNU Octave 5.2 with free software packages), showing all or most details of relevant algorithms. Students are tasked to understand programs, modify them, and apply presented concepts to recorded real RF signal or simulated received signals, with modelled transmission condition and hardware imperfections. Teaching is done by showing examples and their modifications to different real-world telecommunication-like applications. The book consists of three parts: introduction to DSP (spectral analysis and digital filtering), introduction to DSP advanced topics (multi-rate, adaptive, model-based and multimedia - speech, audio, video - signal analysis and processing) and introduction to software-defined modern telecommunication systems (SDR technology, analog and digital modulations, single- and multi-carrier systems, channel estimation and correction as well as synchronization issues). Many real signals are processed in the book, in the first part – mainly speech and audio, while in the second part – mainly RF recordings taken from RTL-SDR USB stick and ADALM-PLUTO module, for example captured IQ data of VOR avionics signal, classical FM radio with RDS, digital DAB/DAB+ radio and 4G-LTE digital telephony. Additionally, modelling and simulation of some transmission scenarios are tested in software in the book, in particular TETRA, ADSL and 5G signals.​ Provides an introduction to digital signal processing and software-based digital communication; Presents a transition from digital signal processing to software-defined telecommunication; Features a suite of pedagogical materials including a laboratory test-bed and computer exercises/experiments​​.
  data science in telecom: RocketPrep Ace Your Data Science Interview 300 Practice Questions and Answers: Machine Learning, Statistics, Databases and More Zack Austin, 2017-12-09 Here's what you get in this book: - 300 practice questions and answers spanning the breadth of topics under the data science umbrella - Covers statistics, machine learning, SQL, NoSQL, Hadoop and bioinformatics - Emphasis on real-world application with a chapter on Python libraries for machine learning - Focus on the most frequently asked interview questions. Avoid information overload - Compact format: easy to read, easy to carry, so you can study on-the-go Now, you finally have what you need to crush your data science interview, and land that dream job. About The Author Zack Austin has been building large scale enterprise systems for clients in the media, telecom, financial services and publishing since 2001. He is based in New York City.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with minimum time …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, released in …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process from …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical barriers …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be collected, …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …