Data Scientist Case Study Interview



  data scientist case study interview: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-24 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder
  data scientist case study interview: Cracking the Data Science Interview Maverick Lin, 2019-12-17 Cracking the Data Science Interview is the first book that attempts to capture the essence of data science in a concise, compact, and clean manner. In a Cracking the Coding Interview style, Cracking the Data Science Interview first introduces the relevant concepts, then presents a series of interview questions to help you solidify your understanding and prepare you for your next interview. Topics include: - Necessary Prerequisites (statistics, probability, linear algebra, and computer science) - 18 Big Ideas in Data Science (such as Occam's Razor, Overfitting, Bias/Variance Tradeoff, Cloud Computing, and Curse of Dimensionality) - Data Wrangling (exploratory data analysis, feature engineering, data cleaning and visualization) - Machine Learning Models (such as k-NN, random forests, boosting, neural networks, k-means clustering, PCA, and more) - Reinforcement Learning (Q-Learning and Deep Q-Learning) - Non-Machine Learning Tools (graph theory, ARIMA, linear programming) - Case Studies (a look at what data science means at companies like Amazon and Uber) Maverick holds a bachelor's degree from the College of Engineering at Cornell University in operations research and information engineering (ORIE) and a minor in computer science. He is the author of the popular Data Science Cheatsheet and Data Engineering Cheatsheet on GCP and has previous experience in data science consulting for a Fortune 500 company focusing on fraud analytics.
  data scientist case study interview: Ace the Data Science Interview Kevin Huo, Nick Singh, 2021
  data scientist case study interview: Decode and Conquer Lewis C. Lin, 2013-11-28 Land that Dream Product Manager Job...TODAYSeeking a product management position?Get Decode and Conquer, the world's first book on preparing you for the product management (PM) interview. Author and professional interview coach, Lewis C. Lin provides you with an industry insider's perspective on how to conquer the most difficult PM interview questions. Decode and Conquer reveals: Frameworks for tackling product design and metrics questions, including the CIRCLES Method(tm), AARM Method(tm), and DIGS Method(tm) Biggest mistakes PM candidates make at the interview and how to avoid them Insider tips on just what interviewers are looking for and how to answer so they can't say NO to hiring you Sample answers for the most important PM interview questions Questions and answers covered in the book include: Design a new iPad app for Google Spreadsheet. Brainstorm as many algorithms as possible for recommending Twitter followers. You're the CEO of the Yellow Cab taxi service. How do you respond to Uber? You're part of the Google Search web spam team. How would you detect duplicate websites? The billboard industry is under monetized. How can Google create a new product or offering to address this? Get the Book that's Recommended by Executives from Google, Amazon, Microsoft, Oracle & VMWare...TODAY
  data scientist case study interview: Heard in Data Science Interviews Kal Mishra, 2018-10-03 A collection of over 650 actual Data Scientist/Machine Learning Engineer job interview questions along with their full answers, references, and useful tips
  data scientist case study interview: Solving Data Science Case Studies with Python Aman Kharwal, 2021-06-28 This book is specially written for those who know the basics of the Python programming language as well as the necessary Python libraries you need for data science like NumPy, Pandas, Matplotlib, Seaborn, Plotly, and Scikit-learn. This book aims to teach you how to think while solving a business problem with your data science skills. To achieve the goal of this book, I started by giving you all the knowledge you need to have before you apply for your first data science job. The technical skills and soft skills you need to become a Data Scientist are also discussed in this book. Next, you'll find some of the best data science case studies that will help you understand what your approach should be while solving a business problem. Ultimately, you will also find some of the most important data science interview questions with their solutions at the end. I hope this book will add a lot of value to your data science skills and that you will feel confident in your entire journey to become Data Scientist.
  data scientist case study interview: Be the Outlier Shrilata Murthy, 2020-07-27 According to LinkedIn's third annual U.S. Emerging Jobs Report, the data scientist role is ranked third among the top-15 emerging jobs in the U.S. Though the field of data science has been exploding, there didn't appear to be a comprehensive resource to help data scientists navigate the interview process... until now. In Be the Outlier: How to Ace Data Science Interviews, data scientist Shrilata Murthy covers all aspects of a data science interview in today's industry. Murthy combines her own experience in the job market with expert insight from data scientists with Google, Facebook, Amazon, NASA, Aetna, MBB & Big 4 consulting firms, and many more. In this book, you'll learn... the foundational knowledge that is key to any data science interview the 100-Word Story framework for writing a stellar resume what to expect from a variety of interview styles (take-home, presentation, case study, etc.), and actionable ways to differentiate yourself from your peers. By using real-world examples, practice questions, and sample interviews, Murthy has created an easy-to-follow guide that will help you crack any data science interview. After reading Be the Outlier, get ready to land your dream job in data science.
  data scientist case study interview: Cases in Online Interview Research Janet Salmons, 2011-11-08 In an era of constrained research budgets, online interviewing opens up immense possibilities: a researcher can literally conduct a global study without ever leaving home. But more than a decade after these technologies started to become available, there are still few studies on how to utilize online interviews in research. This book provides 10 cases of research conducted using online interviews, with data collected through text-based, videoconferencing, multichannel meetings, and immersive 3-D environments. Each case is followed by two commentaries: one from another expert contributor, the second from Janet Salmons, as editor.
  data scientist case study interview: Data Science Projects with Python Stephen Klosterman, 2021-07-29 Gain hands-on experience of Python programming with industry-standard machine learning techniques using pandas, scikit-learn, and XGBoost Key FeaturesThink critically about data and use it to form and test a hypothesisChoose an appropriate machine learning model and train it on your dataCommunicate data-driven insights with confidence and clarityBook Description If data is the new oil, then machine learning is the drill. As companies gain access to ever-increasing quantities of raw data, the ability to deliver state-of-the-art predictive models that support business decision-making becomes more and more valuable. In this book, you'll work on an end-to-end project based around a realistic data set and split up into bite-sized practical exercises. This creates a case-study approach that simulates the working conditions you'll experience in real-world data science projects. You'll learn how to use key Python packages, including pandas, Matplotlib, and scikit-learn, and master the process of data exploration and data processing, before moving on to fitting, evaluating, and tuning algorithms such as regularized logistic regression and random forest. Now in its second edition, this book will take you through the end-to-end process of exploring data and delivering machine learning models. Updated for 2021, this edition includes brand new content on XGBoost, SHAP values, algorithmic fairness, and the ethical concerns of deploying a model in the real world. By the end of this data science book, you'll have the skills, understanding, and confidence to build your own machine learning models and gain insights from real data. What you will learnLoad, explore, and process data using the pandas Python packageUse Matplotlib to create compelling data visualizationsImplement predictive machine learning models with scikit-learnUse lasso and ridge regression to reduce model overfittingEvaluate random forest and logistic regression model performanceDeliver business insights by presenting clear, convincing conclusionsWho this book is for Data Science Projects with Python – Second Edition is for anyone who wants to get started with data science and machine learning. If you're keen to advance your career by using data analysis and predictive modeling to generate business insights, then this book is the perfect place to begin. To quickly grasp the concepts covered, it is recommended that you have basic experience of programming with Python or another similar language, and a general interest in statistics.
  data scientist case study interview: Machine Learning Bookcamp Alexey Grigorev, 2021-11-23 The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning.
  data scientist case study interview: Fighting Churn with Data Carl S. Gold, 2020-12-22 The beating heart of any product or service business is returning clients. Don't let your hard-won customers vanish, taking their money with them. In Fighting Churn with Data you'll learn powerful data-driven techniques to maximize customer retention and minimize actions that cause them to stop engaging or unsubscribe altogether. Summary The beating heart of any product or service business is returning clients. Don't let your hard-won customers vanish, taking their money with them. In Fighting Churn with Data you'll learn powerful data-driven techniques to maximize customer retention and minimize actions that cause them to stop engaging or unsubscribe altogether. This hands-on guide is packed with techniques for converting raw data into measurable metrics, testing hypotheses, and presenting findings that are easily understandable to non-technical decision makers. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Keeping customers active and engaged is essential for any business that relies on recurring revenue and repeat sales. Customer turnover—or “churn”—is costly, frustrating, and preventable. By applying the techniques in this book, you can identify the warning signs of churn and learn to catch customers before they leave. About the book Fighting Churn with Data teaches developers and data scientists proven techniques for stopping churn before it happens. Packed with real-world use cases and examples, this book teaches you to convert raw data into measurable behavior metrics, calculate customer lifetime value, and improve churn forecasting with demographic data. By following Zuora Chief Data Scientist Carl Gold’s methods, you’ll reap the benefits of high customer retention. What's inside Calculating churn metrics Identifying user behavior that predicts churn Using churn reduction tactics with customer segmentation Applying churn analysis techniques to other business areas Using AI for accurate churn forecasting About the reader For readers with basic data analysis skills, including Python and SQL. About the author Carl Gold (PhD) is the Chief Data Scientist at Zuora, Inc., the industry-leading subscription management platform. Table of Contents: PART 1 - BUILDING YOUR ARSENAL 1 The world of churn 2 Measuring churn 3 Measuring customers 4 Observing renewal and churn PART 2 - WAGING THE WAR 5 Understanding churn and behavior with metrics 6 Relationships between customer behaviors 7 Segmenting customers with advanced metrics PART 3 - SPECIAL WEAPONS AND TACTICS 8 Forecasting churn 9 Forecast accuracy and machine learning 10 Churn demographics and firmographics 11 Leading the fight against churn
  data scientist case study interview: Case Interview Secrets Victor Cheng, 2012 Cheng, a former McKinsey management consultant, reveals his proven, insider'smethod for acing the case interview.
  data scientist case study interview: Cracking The Machine Learning Interview Nitin Suri, 2018-12-18 A breakthrough in machine learning would be worth ten Microsofts. -Bill Gates Despite being one of the hottest disciplines in the Tech industry right now, Artificial Intelligence and Machine Learning remain a little elusive to most.The erratic availability of resources online makes it extremely challenging for us to delve deeper into these fields. Especially when gearing up for job interviews, most of us are at a loss due to the unavailability of a complete and uncondensed source of learning. Cracking the Machine Learning Interview Equips you with 225 of the best Machine Learning problems along with their solutions. Requires only a basic knowledge of fundamental mathematical and statistical concepts. Assists in learning the intricacies underlying Machine Learning concepts and algorithms suited to specific problems. Uniquely provides a manifold understanding of both statistical foundations and applied programming models for solving problems. Discusses key points and concrete tips for approaching real life system design problems and imparts the ability to apply them to your day to day work. This book covers all the major topics within Machine Learning which are frequently asked in the Interviews. These include: Supervised and Unsupervised Learning Classification and Regression Decision Trees Ensembles K-Nearest Neighbors Logistic Regression Support Vector Machines Neural Networks Regularization Clustering Dimensionality Reduction Feature Extraction Feature Engineering Model Evaluation Natural Language Processing Real life system design problems Mathematics and Statistics behind the Machine Learning Algorithms Various distributions and statistical tests This book can be used by students and professionals alike. It has been drafted in a way to benefit both, novices as well as individuals with substantial experience in Machine Learning. Following Cracking The Machine Learning Interview diligently would equip you to face any Machine Learning Interview.
  data scientist case study interview: Deep Learning Interviews Shlomo Kashani, 2020-12-09 The book's contents is a large inventory of numerous topics relevant to DL job interviews and graduate level exams. That places this work at the forefront of the growing trend in science to teach a core set of practical mathematical and computational skills. It is widely accepted that the training of every computer scientist must include the fundamental theorems of ML, and AI appears in the curriculum of nearly every university. This volume is designed as an excellent reference for graduates of such programs.
  data scientist case study interview: Case Interview Questions for Tech Companies Lewis Lin, 2016-10-04 Case Interview Questions for Tech Companies provides 155 practice questions and answers to conquer case interviews for the following tech roles: Marketing Operations Finance Strategy Analytics Business Development Supplier or Vendor Management ...and Product Management -- QUESTIONS COVERED IN THE BOOK Here are some of the questions covered in the book: Marketing Create a marketing campaign for Microsoft Office 365. Write a media statement to respond to Uber mischaracterizations voiced in a taxi leader's newspaper op-ed. Operations Describe how Apple's supply chain works. What challenges does Apple face on a day-to-day basis? What's the bottleneck for an Amazon Robot Picker? And what is the capacity of the assembly line, in units per hour? During the holiday season, Amazon customers shipped 200 orders per second. Amazon's data science team discovered that the average number of orders waiting to be shipped was 20,650. How long did the average Amazon order wait to be shipped? Finance What should Apple consider before implementing a shop-in-shop store inside Best Buy? If you projected a $500M expense and the variance came in at $1M, what are some of the explanations for why that is happening? Be prepared to give more than three scenarios. Business Development A car dealer partner wants to stop doing business with Uber. What should you do? How would you identify university faculty to source content for an online university? Strategy If you could open a Google store anywhere, where would it be and why? Give your analysis of several recent acquisitions that Google has made. Analytics What top metrics would you track for the Tinder online dating app? If 1,000 people opened the Uber app during one hour, how many cars do you need? Product Management Let's say we wanted to implement an Amazon Mayday-like feature in Gmail. How would that work? How would you any Microsoft product to a restaurant? AUTHOR BIO Lewis C. Lin, former Google and Microsoft executive, has trained thousands of candidates to get ready for tech interviews, using his proven interview techniques. Lewis' students have received offers from the most coveted firms including Google, Facebook, Uber, Amazon, Microsoft, IBM, Dell and HP. Lewis has a bachelor's in computer science from Stanford University and an MBA from Northwestern University's Kellogg School of Management. He's the author of several bestsellers including Interview Math, Rise Above the Noise as well as Decode and Conquer. HERE'S WHAT PEOPLE SAY ABOUT THE AUTHOR Got the Amazon offer, with an initial package that was $100K more than what I currently make at [a top 5 tech company]. It's a dream job for the role of Principal Product Manager for a [special project]. - Q.K. Just signed the offer for a Google product marketing manager role. Your tips helped me relax and concentrate, so the time went by quickly even though it was really a tough interview. - D.E. I had my in-person interviews down at Facebook last week and got my offer letter the next day! You were definitely a huge help in preparing for the interviews. - L.S.
  data scientist case study interview: Interviewing for Social Scientists Hilary Arksey, Peter T Knight, 1999-10-25 `This is an excellent book. It will be required reading on my methods courses' - Nigel Fielding, University of Surrey Students at postgraduate, and increasingly at undergraduate, level are required to undertake research projects and interviewing is the most frequently used research method. This book provides a comprehensive and authoritative introduction to interviewing. It covers all the issues that arise in interview work: theories of interviewing; design; application; and interpretation. Richly illustrated with relevant examples, each chapter includes handy statements of `advantages' and `disadvantages' of the approaches discussed.
  data scientist case study interview: Data Science Projects with Python Stephen Klosterman, 2019-04-30 Gain hands-on experience with industry-standard data analysis and machine learning tools in Python Key FeaturesTackle data science problems by identifying the problem to be solvedIllustrate patterns in data using appropriate visualizationsImplement suitable machine learning algorithms to gain insights from dataBook Description Data Science Projects with Python is designed to give you practical guidance on industry-standard data analysis and machine learning tools, by applying them to realistic data problems. You will learn how to use pandas and Matplotlib to critically examine datasets with summary statistics and graphs, and extract the insights you seek to derive. You will build your knowledge as you prepare data using the scikit-learn package and feed it to machine learning algorithms such as regularized logistic regression and random forest. You’ll discover how to tune algorithms to provide the most accurate predictions on new and unseen data. As you progress, you’ll gain insights into the working and output of these algorithms, building your understanding of both the predictive capabilities of the models and why they make these predictions. By then end of this book, you will have the necessary skills to confidently use machine learning algorithms to perform detailed data analysis and extract meaningful insights from unstructured data. What you will learnInstall the required packages to set up a data science coding environmentLoad data into a Jupyter notebook running PythonUse Matplotlib to create data visualizationsFit machine learning models using scikit-learnUse lasso and ridge regression to regularize your modelsCompare performance between models to find the best outcomesUse k-fold cross-validation to select model hyperparametersWho this book is for If you are a data analyst, data scientist, or business analyst who wants to get started using Python and machine learning techniques to analyze data and predict outcomes, this book is for you. Basic knowledge of Python and data analytics will help you get the most from this book. Familiarity with mathematical concepts such as algebra and basic statistics will also be useful.
  data scientist case study interview: Interview Research in Political Science Maria Elayna Mosley, 2013-05-15 Interviews are a frequent and important part of empirical research in political science, but graduate programs rarely offer discipline-specific training in selecting interviewees, conducting interviews, and using the data thus collected. Interview Research in Political Science addresses this vital need, offering hard-won advice for both graduate students and faculty members. The contributors to this book have worked in a variety of field locations and settings and have interviewed a wide array of informants, from government officials to members of rebel movements and victims of wartime violence, from lobbyists and corporate executives to workers and trade unionists. The authors encourage scholars from all subfields of political science to use interviews in their research, and they provide a set of lessons and tools for doing so. The book addresses how to construct a sample of interviewees; how to collect and report interview data; and how to address ethical considerations and the Institutional Review Board process. Other chapters discuss how to link interview-based evidence with causal claims; how to use proxy interviews or an interpreter to improve access; and how to structure interview questions. A useful appendix contains examples of consent documents, semistructured interview prompts, and interview protocols.
  data scientist case study interview: 500 Data Science Interview Questions and Answers Vamsee Puligadda, Get that job, you aspire for! Want to switch to that high paying job? Or are you already been preparing hard to give interview the next weekend? Do you know how many people get rejected in interviews by preparing only concepts but not focusing on actually which questions will be asked in the interview? Don't be that person this time. This is the most comprehensive Data Science interview questions book that you can ever find out. It contains: 500 most frequently asked and important Data Science interview questions and answers Wide range of questions which cover not only basics in Data Science but also most advanced and complex questions which will help freshers, experienced professionals, senior developers, testers to crack their interviews.
  data scientist case study interview: Originals Adam Grant, 2017-02-07 The #1 New York Times bestseller that examines how people can champion new ideas in their careers and everyday life—and how leaders can fight groupthink, from the author of Hidden Potential, Think Again, and the co-author of Option B “Filled with fresh insights on a broad array of topics that are important to our personal and professional lives.”—The New York Times DealBook “Originals is one of the most important and captivating books I have ever read, full of surprising and powerful ideas. It will not only change the way you see the world; it might just change the way you live your life. And it could very well inspire you to change your world.” —Sheryl Sandberg, COO of Facebook and author of Lean In With Give and Take, Adam Grant not only introduced a landmark new paradigm for success but also established himself as one of his generation’s most compelling and provocative thought leaders. In Originals he again addresses the challenge of improving the world, but now from the perspective of becoming original: choosing to champion novel ideas and values that go against the grain, battle conformity, and buck outdated traditions. How can we originate new ideas, policies, and practices without risking it all? Using surprising studies and stories spanning business, politics, sports, and entertainment, Grant explores how to recognize a good idea, speak up without getting silenced, build a coalition of allies, choose the right time to act, and manage fear and doubt; how parents and teachers can nurture originality in children; and how leaders can build cultures that welcome dissent. Learn from an entrepreneur who pitches his start-ups by highlighting the reasons not to invest, a woman at Apple who challenged Steve Jobs from three levels below, an analyst who overturned the rule of secrecy at the CIA, a billionaire financial wizard who fires employees for failing to criticize him, and a TV executive who didn’t even work in comedy but saved Seinfeld from the cutting-room floor. The payoff is a set of groundbreaking insights about rejecting conformity and improving the status quo.
  data scientist case study interview: Doing Interview Research Uwe Flick, 2021-10-13 If you want to use interview methods in your research project but are not sure where to start, this book will get you up and running. With hands-on advice for every stage of the social research process, it helps you succeed in every step, from understanding interview research through to designing and conducting your study and working with data. The book: Discusses eight methods of interviewing in-depth, including semi-structured interviews, narrative interviews, focus groups and online interviews. Features over 75 case studies of real interview research from across the globe, including Australia, Canada, Germany, Norway, the Philippines and South Africa. Spotlights strategies for conducting ethical, inclusive research, including indigenous research approaches. Packed not only with learning features - including learning objectives, checklists of questions to ask yourself at every stage of your project, practical exercises to help you put your learning into practice and further reading so you can broaden your knowledge - it is also supported by online resources such as annotated transcripts and videos of mock interviews to empower any social science student to use interview research methods with confidence.
  data scientist case study interview: Storytelling with Data Cole Nussbaumer Knaflic, 2015-10-09 Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it!
  data scientist case study interview: Data Science and Machine Learning Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman, 2019-11-20 Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
  data scientist case study interview: Ask a Manager Alison Green, 2018-05-01 From the creator of the popular website Ask a Manager and New York’s work-advice columnist comes a witty, practical guide to 200 difficult professional conversations—featuring all-new advice! There’s a reason Alison Green has been called “the Dear Abby of the work world.” Ten years as a workplace-advice columnist have taught her that people avoid awkward conversations in the office because they simply don’t know what to say. Thankfully, Green does—and in this incredibly helpful book, she tackles the tough discussions you may need to have during your career. You’ll learn what to say when • coworkers push their work on you—then take credit for it • you accidentally trash-talk someone in an email then hit “reply all” • you’re being micromanaged—or not being managed at all • you catch a colleague in a lie • your boss seems unhappy with your work • your cubemate’s loud speakerphone is making you homicidal • you got drunk at the holiday party Praise for Ask a Manager “A must-read for anyone who works . . . [Alison Green’s] advice boils down to the idea that you should be professional (even when others are not) and that communicating in a straightforward manner with candor and kindness will get you far, no matter where you work.”—Booklist (starred review) “The author’s friendly, warm, no-nonsense writing is a pleasure to read, and her advice can be widely applied to relationships in all areas of readers’ lives. Ideal for anyone new to the job market or new to management, or anyone hoping to improve their work experience.”—Library Journal (starred review) “I am a huge fan of Alison Green’s Ask a Manager column. This book is even better. It teaches us how to deal with many of the most vexing big and little problems in our workplaces—and to do so with grace, confidence, and a sense of humor.”—Robert Sutton, Stanford professor and author of The No Asshole Rule and The Asshole Survival Guide “Ask a Manager is the ultimate playbook for navigating the traditional workforce in a diplomatic but firm way.”—Erin Lowry, author of Broke Millennial: Stop Scraping By and Get Your Financial Life Together
  data scientist case study interview: Quant Job Interview Questions and Answers Mark Joshi, Nick Denson, Nicholas Denson, Andrew Downes, 2013 The quant job market has never been tougher. Extensive preparation is essential. Expanding on the successful first edition, this second edition has been updated to reflect the latest questions asked. It now provides over 300 interview questions taken from actual interviews in the City and Wall Street. Each question comes with a full detailed solution, discussion of what the interviewer is seeking and possible follow-up questions. Topics covered include option pricing, probability, mathematics, numerical algorithms and C++, as well as a discussion of the interview process and the non-technical interview. All three authors have worked as quants and they have done many interviews from both sides of the desk. Mark Joshi has written many papers and books including the very successful introductory textbook, The Concepts and Practice of Mathematical Finance.
  data scientist case study interview: Thinking with Data Max Shron, 2014-01-20 Many analysts are too concerned with tools and techniques for cleansing, modeling, and visualizing datasets and not concerned enough with asking the right questions. In this practical guide, data strategy consultant Max Shron shows you how to put the why before the how, through an often-overlooked set of analytical skills. Thinking with Data helps you learn techniques for turning data into knowledge you can use. You’ll learn a framework for defining your project, including the data you want to collect, and how you intend to approach, organize, and analyze the results. You’ll also learn patterns of reasoning that will help you unveil the real problem that needs to be solved. Learn a framework for scoping data projects Understand how to pin down the details of an idea, receive feedback, and begin prototyping Use the tools of arguments to ask good questions, build projects in stages, and communicate results Explore data-specific patterns of reasoning and learn how to build more useful arguments Delve into causal reasoning and learn how it permeates data work Put everything together, using extended examples to see the method of full problem thinking in action
  data scientist case study interview: Cracking the Coding Interview Gayle Laakmann McDowell, 2011 Now in the 5th edition, Cracking the Coding Interview gives you the interview preparation you need to get the top software developer jobs. This book provides: 150 Programming Interview Questions and Solutions: From binary trees to binary search, this list of 150 questions includes the most common and most useful questions in data structures, algorithms, and knowledge based questions. 5 Algorithm Approaches: Stop being blind-sided by tough algorithm questions, and learn these five approaches to tackle the trickiest problems. Behind the Scenes of the interview processes at Google, Amazon, Microsoft, Facebook, Yahoo, and Apple: Learn what really goes on during your interview day and how decisions get made. Ten Mistakes Candidates Make -- And How to Avoid Them: Don't lose your dream job by making these common mistakes. Learn what many candidates do wrong, and how to avoid these issues. Steps to Prepare for Behavioral and Technical Questions: Stop meandering through an endless set of questions, while missing some of the most important preparation techniques. Follow these steps to more thoroughly prepare in less time.
  data scientist case study interview: Frenemies Ken Auletta, 2019-06-04 An intimate and profound reckoning with the changes buffeting the $2 trillion global advertising and marketing business from the perspective of its most powerful players, by the bestselling author of Googled Advertising and marketing touches on every corner of our lives, and the industry is the invisible fuel powering almost all media. Complain about it though we might, without it the world would be a darker place. But of all the industries wracked by change in the digital age, few have been turned on their heads as dramatically as this one. Mad Men are turning into Math Men (and women--though too few), an instinctual art is transforming into a science, and we are a long way from the days of Don Draper. Frenemies is Ken Auletta's reckoning with an industry under existential assault. He enters the rooms of the ad world's most important players, meeting the old guard as well as new powers and power brokers, investigating their perspectives. It's essential reading, not simply because of what it reveals about this world, but because of the potential consequences: the survival of media as we know it depends on the money generated by advertising and marketing--revenue that is in peril in the face of technological changes and the fraying trust between the industry's key players.
  data scientist case study interview: Deep Learning and the Game of Go Kevin Ferguson, Max Pumperla, 2019-01-06 Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning
  data scientist case study interview: The Consulting Interview Bible Jenny Rae Le Roux, Kevin Gao, 2014
  data scientist case study interview: Cracking the PM Interview Gayle Laakmann McDowell, Jackie Bavaro, 2013 How many pizzas are delivered in Manhattan? How do you design an alarm clock for the blind? What is your favorite piece of software and why? How would you launch a video rental service in India? This book will teach you how to answer these questions and more. Cracking the PM Interview is a comprehensive book about landing a product management role in a startup or bigger tech company. Learn how the ambiguously-named PM (product manager / program manager) role varies across companies, what experience you need, how to make your existing experience translate, what a great PM resume and cover letter look like, and finally, how to master the interview: estimation questions, behavioral questions, case questions, product questions, technical questions, and the super important pitch.
  data scientist case study interview: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates
  data scientist case study interview: How Smart Machines Think Sean Gerrish, 2018-10-30 Everything you've always wanted to know about self-driving cars, Netflix recommendations, IBM's Watson, and video game-playing computer programs. The future is here: Self-driving cars are on the streets, an algorithm gives you movie and TV recommendations, IBM's Watson triumphed on Jeopardy over puny human brains, computer programs can be trained to play Atari games. But how do all these things work? In this book, Sean Gerrish offers an engaging and accessible overview of the breakthroughs in artificial intelligence and machine learning that have made today's machines so smart. Gerrish outlines some of the key ideas that enable intelligent machines to perceive and interact with the world. He describes the software architecture that allows self-driving cars to stay on the road and to navigate crowded urban environments; the million-dollar Netflix competition for a better recommendation engine (which had an unexpected ending); and how programmers trained computers to perform certain behaviors by offering them treats, as if they were training a dog. He explains how artificial neural networks enable computers to perceive the world—and to play Atari video games better than humans. He explains Watson's famous victory on Jeopardy, and he looks at how computers play games, describing AlphaGo and Deep Blue, which beat reigning world champions at the strategy games of Go and chess. Computers have not yet mastered everything, however; Gerrish outlines the difficulties in creating intelligent agents that can successfully play video games like StarCraft that have evaded solution—at least for now. Gerrish weaves the stories behind these breakthroughs into the narrative, introducing readers to many of the researchers involved, and keeping technical details to a minimum. Science and technology buffs will find this book an essential guide to a future in which machines can outsmart people.
  data scientist case study interview: A Practical Guide To Quantitative Finance Interviews Xinfeng Zhou, 2020-05-05 This book will prepare you for quantitative finance interviews by helping you zero in on the key concepts that are frequently tested in such interviews. In this book we analyze solutions to more than 200 real interview problems and provide valuable insights into how to ace quantitative interviews. The book covers a variety of topics that you are likely to encounter in quantitative interviews: brain teasers, calculus, linear algebra, probability, stochastic processes and stochastic calculus, finance and programming.
  data scientist case study interview: The Patient History: Evidence-Based Approach Mark Henderson, Lawrence Tierney, Gerald Smetana, 2012-06-13 The definitive evidence-based introduction to patient history-taking NOW IN FULL COLOR For medical students and other health professions students, an accurate differential diagnosis starts with The Patient History. The ideal companion to major textbooks on the physical examination, this trusted guide is widely acclaimed for its skill-building, and evidence based approach to the medical history. Now in full color, The Patient History defines best practices for the patient interview, explaining how to effectively elicit information from the patient in order to generate an accurate differential diagnosis. The second edition features all-new chapters, case scenarios, and a wealth of diagnostic algorithms. Introductory chapters articulate the fundamental principles of medical interviewing. The book employs a rigorous evidenced-based approach, reviewing and highlighting relevant citations from the literature throughout each chapter. Features NEW! Case scenarios introduce each chapter and place history-taking principles in clinical context NEW! Self-assessment multiple choice Q&A conclude each chapter—an ideal review for students seeking to assess their retention of chapter material NEW! Full-color presentation Essential chapter on red eye, pruritus, and hair loss Symptom-based chapters covering 59 common symptoms and clinical presentations Diagnostic approach section after each chapter featuring color algorithms and several multiple-choice questions Hundreds of practical, high-yield questions to guide the history, ranging from basic queries to those appropriate for more experienced clinicians
  data scientist case study interview: Case in Point Marc Cosentino, 2011 Marc Cosentino demystifies the consulting case interview. He takes you inside a typical interview by exploring the various types of case questions and he shares with you the acclaimed Ivy Case System which will give you the confidence to answer even the most sophisticated cases. The book includes over 40 strategy cases, a number of case starts exercises, several human capital cases, a section on marketing cases and 21 ways to cut costs.
  data scientist case study interview: R for Everyone Jared P. Lander, 2017-06-13 Statistical Computation for Programmers, Scientists, Quants, Excel Users, and Other Professionals Using the open source R language, you can build powerful statistical models to answer many of your most challenging questions. R has traditionally been difficult for non-statisticians to learn, and most R books assume far too much knowledge to be of help. R for Everyone, Second Edition, is the solution. Drawing on his unsurpassed experience teaching new users, professional data scientist Jared P. Lander has written the perfect tutorial for anyone new to statistical programming and modeling. Organized to make learning easy and intuitive, this guide focuses on the 20 percent of R functionality you’ll need to accomplish 80 percent of modern data tasks. Lander’s self-contained chapters start with the absolute basics, offering extensive hands-on practice and sample code. You’ll download and install R; navigate and use the R environment; master basic program control, data import, manipulation, and visualization; and walk through several essential tests. Then, building on this foundation, you’ll construct several complete models, both linear and nonlinear, and use some data mining techniques. After all this you’ll make your code reproducible with LaTeX, RMarkdown, and Shiny. By the time you’re done, you won’t just know how to write R programs, you’ll be ready to tackle the statistical problems you care about most. Coverage includes Explore R, RStudio, and R packages Use R for math: variable types, vectors, calling functions, and more Exploit data structures, including data.frames, matrices, and lists Read many different types of data Create attractive, intuitive statistical graphics Write user-defined functions Control program flow with if, ifelse, and complex checks Improve program efficiency with group manipulations Combine and reshape multiple datasets Manipulate strings using R’s facilities and regular expressions Create normal, binomial, and Poisson probability distributions Build linear, generalized linear, and nonlinear models Program basic statistics: mean, standard deviation, and t-tests Train machine learning models Assess the quality of models and variable selection Prevent overfitting and perform variable selection, using the Elastic Net and Bayesian methods Analyze univariate and multivariate time series data Group data via K-means and hierarchical clustering Prepare reports, slideshows, and web pages with knitr Display interactive data with RMarkdown and htmlwidgets Implement dashboards with Shiny Build reusable R packages with devtools and Rcpp Register your product at informit.com/register for convenient access to downloads, updates, and corrections as they become available.
  data scientist case study interview: The Case Interview: 20 Days to Ace the Case Destin Whitehurst, Erin Robinson, 2016-02-11 Game-changing tips and tricks to nail the case interview and launch your consulting career. Management consultants Destin Whitehurst and Erin Robinson give you need-to-know techniques for polishing your poise and tightening your case interview skills. 20 Days to Ace the Case Interview preps you with the nuts and bolts of the case interview process with daily exercises, mock interviews, and industry know-how designed to help you ace your interview. Think of this book as your twenty-day intensive, management consulting boot camp, the perfect supplement to your arsenal of case interview lessons and material. With this guidebook, you will: Gain day-by-day structure: Daily case interview exercises progressively prep you Ask the right questions: Fundamental frameworks teach you exactly what to ask under pressure Learn from the pros: Review real-life stories from consulting experts Uncover unique strategies: Discover custom-developed case interview tips straight from the authors Go off script: Adapt what you’ve learned with our bonus case interview guides
  data scientist case study interview: Qualitative Interviewing Herbert J. Rubin, Irene Rubin, 2005 The 2nd edition of this work has been completely rewritten to add new examples & to better integrate the presentation of topics. Readers will see how the choice of topic influences question wording & how the questions asked influence the analysis.
  data scientist case study interview: Business Analyst Interview Questions & Answers Kriti Rathi, Reelav Patel, 2019-06-14 This book provides scripted answers for the Business Analysis interview.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a Transnationa…
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and …

Belmont Forum Adopts Open Data Principles for Environmental Chan…
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with minimum time …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, released in …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process from …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical barriers …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be collected, …