data science in clinical trials: Fundamentals of Clinical Data Science Pieter Kubben, Michel Dumontier, Andre Dekker, 2018-12-21 This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience. |
data science in clinical trials: Sharing Clinical Trial Data Institute of Medicine, Board on Health Sciences Policy, Committee on Strategies for Responsible Sharing of Clinical Trial Data, 2015-04-20 Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients. |
data science in clinical trials: The Prevention and Treatment of Missing Data in Clinical Trials National Research Council, Division of Behavioral and Social Sciences and Education, Committee on National Statistics, Panel on Handling Missing Data in Clinical Trials, 2010-12-21 Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data. |
data science in clinical trials: Data Monitoring in Clinical Trials David L. DeMets, Curt D. Furberg, Lawrence M. Friedman, 2006-06-22 From the authors of Fundamentals of Clinical Trials which has sold over 15,000 copies world wide since its publication in 1998. No competition yet as the text does not focus on how to do clinical trials but on very specific situations that can be encountered during the process. |
data science in clinical trials: Clinical Trial Data Analysis Using R and SAS Ding-Geng (Din) Chen, Karl E. Peace, Pinggao Zhang, 2017-06-01 Review of the First Edition The goal of this book, as stated by the authors, is to fill the knowledge gap that exists between developed statistical methods and the applications of these methods. Overall, this book achieves the goal successfully and does a nice job. I would highly recommend it ...The example-based approach is easy to follow and makes the book a very helpful desktop reference for many biostatistics methods.—Journal of Statistical Software Clinical Trial Data Analysis Using R and SAS, Second Edition provides a thorough presentation of biostatistical analyses of clinical trial data with step-by-step implementations using R and SAS. The book’s practical, detailed approach draws on the authors’ 30 years’ experience in biostatistical research and clinical development. The authors develop step-by-step analysis code using appropriate R packages and functions and SAS PROCS, which enables readers to gain an understanding of the analysis methods and R and SAS implementation so that they can use these two popular software packages to analyze their own clinical trial data. What’s New in the Second Edition Adds SAS programs along with the R programs for clinical trial data analysis. Updates all the statistical analysis with updated R packages. Includes correlated data analysis with multivariate analysis of variance. Applies R and SAS to clinical trial data from hypertension, duodenal ulcer, beta blockers, familial andenomatous polyposis, and breast cancer trials. Covers the biostatistical aspects of various clinical trials, including treatment comparisons, time-to-event endpoints, longitudinal clinical trials, and bioequivalence trials. |
data science in clinical trials: Data Science and Medical Informatics in Healthcare Technologies Nguyen Thi Dieu Linh, Zhongyu (Joan) Lu, 2021-06-19 This book highlights a timely and accurate insight at the endeavour of the bioinformatics and genomics clinicians from industry and academia to address the societal needs. The contents of the book unearth the lacuna between the medication and treatment in the current preventive medicinal and pharmaceutical system. It contains chapters prepared by experts in life sciences along with data scientists for examining the circumstances of health care system for the next decade. It also highlights the automated processes for analyzing data in clinical trial research, specifically for drug development. Additionally, the data science solutions provided in this book help pharmaceutical companies to improve on what had historically been manual, costly and laborious process for cross-referencing research in clinical trials on drug development, while laying the groundwork for use with a full range of other drugs for the conditions ranging from tuberculosis, to diabetes, to heart attacks and many others. |
data science in clinical trials: Leveraging Data Science for Global Health Leo Anthony Celi, Maimuna S. Majumder, Patricia Ordóñez, Juan Sebastian Osorio, Kenneth E. Paik, Melek Somai, 2020-07-31 This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure – and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient. |
data science in clinical trials: Clinical Research Computing Prakash Nadkarni, 2016-04-29 Clinical Research Computing: A Practitioner's Handbook deals with the nuts-and-bolts of providing informatics and computing support for clinical research. The subjects that the practitioner must be aware of are not only technological and scientific, but also organizational and managerial. Therefore, the author offers case studies based on real life experiences in order to prepare the readers for the challenges they may face during their experiences either supporting clinical research or supporting electronic record systems. Clinical research computing is the application of computational methods to the broad field of clinical research. With the advent of modern digital computing, and the powerful data collection, storage, and analysis that is possible with it, it becomes more relevant to understand the technical details in order to fully seize its opportunities. - Offers case studies, based on real-life examples where possible, to engage the readers with more complex examples - Provides studies backed by technical details, e.g., schema diagrams, code snippets or algorithms illustrating particular techniques, to give the readers confidence to employ the techniques described in their own settings - Offers didactic content organization and an increasing complexity through the chapters |
data science in clinical trials: Sharing Clinical Research Data Institute of Medicine, Board on Health Care Services, Board on Health Sciences Policy, Roundtable on Translating Genomic-Based Research for Health, National Cancer Policy Forum, Forum on Neuroscience and Nervous System Disorders, Forum on Drug Discovery, Development, and Translation, 2013-06-07 Pharmaceutical companies, academic researchers, and government agencies such as the Food and Drug Administration and the National Institutes of Health all possess large quantities of clinical research data. If these data were shared more widely within and across sectors, the resulting research advances derived from data pooling and analysis could improve public health, enhance patient safety, and spur drug development. Data sharing can also increase public trust in clinical trials and conclusions derived from them by lending transparency to the clinical research process. Much of this information, however, is never shared. Retention of clinical research data by investigators and within organizations may represent lost opportunities in biomedical research. Despite the potential benefits that could be accrued from pooling and analysis of shared data, barriers to data sharing faced by researchers in industry include concerns about data mining, erroneous secondary analyses of data, and unwarranted litigation, as well as a desire to protect confidential commercial information. Academic partners face significant cultural barriers to sharing data and participating in longer term collaborative efforts that stem from a desire to protect intellectual autonomy and a career advancement system built on priority of publication and citation requirements. Some barriers, like the need to protect patient privacy, pre- sent challenges for both sectors. Looking ahead, there are also a number of technical challenges to be faced in analyzing potentially large and heterogeneous datasets. This public workshop focused on strategies to facilitate sharing of clinical research data in order to advance scientific knowledge and public health. While the workshop focused on sharing of data from preplanned interventional studies of human subjects, models and projects involving sharing of other clinical data types were considered to the extent that they provided lessons learned and best practices. The workshop objectives were to examine the benefits of sharing of clinical research data from all sectors and among these sectors, including, for example: benefits to the research and development enterprise and benefits to the analysis of safety and efficacy. Sharing Clinical Research Data: Workshop Summary identifies barriers and challenges to sharing clinical research data, explores strategies to address these barriers and challenges, including identifying priority actions and low-hanging fruit opportunities, and discusses strategies for using these potentially large datasets to facilitate scientific and public health advances. |
data science in clinical trials: Practical Guide to Clinical Data Management Susanne Prokscha, 2011-10-26 The management of clinical data, from its collection during a trial to its extraction for analysis, has become a critical element in the steps to prepare a regulatory submission and to obtain approval to market a treatment. Groundbreaking on its initial publication nearly fourteen years ago, and evolving with the field in each iteration since then, |
data science in clinical trials: The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry Stephanie K. Ashenden, 2021-04-23 The Era of Artificial Intelligence, Machine Learning and Data Science in the Pharmaceutical Industry examines the drug discovery process, assessing how new technologies have improved effectiveness. Artificial intelligence and machine learning are considered the future for a wide range of disciplines and industries, including the pharmaceutical industry. In an environment where producing a single approved drug costs millions and takes many years of rigorous testing prior to its approval, reducing costs and time is of high interest. This book follows the journey that a drug company takes when producing a therapeutic, from the very beginning to ultimately benefitting a patient's life. This comprehensive resource will be useful to those working in the pharmaceutical industry, but will also be of interest to anyone doing research in chemical biology, computational chemistry, medicinal chemistry and bioinformatics. - Demonstrates how the prediction of toxic effects is performed, how to reduce costs in testing compounds, and its use in animal research - Written by the industrial teams who are conducting the work, showcasing how the technology has improved and where it should be further improved - Targets materials for a better understanding of techniques from different disciplines, thus creating a complete guide |
data science in clinical trials: Clinical Data-Mining Irwin Epstein, 2010 Clinical Data-Mining (CDM) involves the conceptualization, extraction, analysis, and interpretation of available clinical data for practice knowledge-building, clinical decision-making and practitioner reflection. Depending upon the type of data mined, CDM can be qualitative or quantitative; it is generally retrospective, but may be meaningfully combined with original data collection.Any research method that relies on the contents of case records or information systems data inevitably has limitations, but with proper safeguards these can be minimized. Among CDM's strengths however, are that it is unobtrusive, inexpensive, presents little risk to research subjects, and is ethically compatible with practitioner value commitments. When conducted by practitioners, CDM yields conceptual as well as data-driven insight into their own practice- and program-generated questions.This pocket guide, from a seasoned practice-based researcher, covers all the basics of conducting practitioner-initiated CDM studies or CDM doctoral dissertations, drawing extensively on published CDM studies and completed CDM dissertations from multiple social work settings in the United States, Australia, Israel, Hong Kong and the United Kingdom. In addition, it describes consulting principles for researchers interested in forging collaborative university-agency CDM partnerships, making it a practical tool for novice practitioner-researchers and veteran academic-researchers alike.As such, this book is an exceptional guide both for professionals conducting practice-based research as well as for social work faculty seeking an evidence-informed approach to practice-research integration. |
data science in clinical trials: Clinical Trial Data Analysis Using R Ding-Geng (Din) Chen, Karl E. Peace, 2010-12-14 Too often in biostatistical research and clinical trials, a knowledge gap exists between developed statistical methods and the applications of these methods. Filling this gap, Clinical Trial Data Analysis Using R provides a thorough presentation of biostatistical analyses of clinical trial data and shows step by step how to implement the statistical methods using R. The book’s practical, detailed approach draws on the authors’ 30 years of real-world experience in biostatistical research and clinical development. Each chapter presents examples of clinical trials based on the authors’ actual experiences in clinical drug development. Various biostatistical methods for analyzing the data are then identified. The authors develop analysis code step by step using appropriate R packages and functions. This approach enables readers to gain an understanding of the analysis methods and R implementation so that they can use R to analyze their own clinical trial data. With step-by-step illustrations of R implementations, this book shows how to easily use R to simulate and analyze data from a clinical trial. It describes numerous up-to-date statistical methods and offers sound guidance on the processes involved in clinical trials. |
data science in clinical trials: Preventing and Treating Missing Data in Longitudinal Clinical Trials Craig H. Mallinckrodt, 2013-01-28 Focuses on the prevention and treatment of missing data in longitudinal clinical trials, looking at key principles and explaining analytic methods. |
data science in clinical trials: Intelligence-Based Medicine Anthony C. Chang, 2020-06-27 Intelligence-Based Medicine: Data Science, Artificial Intelligence, and Human Cognition in Clinical Medicine and Healthcare provides a multidisciplinary and comprehensive survey of artificial intelligence concepts and methodologies with real life applications in healthcare and medicine. Authored by a senior physician-data scientist, the book presents an intellectual and academic interface between the medical and the data science domains that is symmetric and balanced. The content consists of basic concepts of artificial intelligence and its real-life applications in a myriad of medical areas as well as medical and surgical subspecialties. It brings section summaries to emphasize key concepts delineated in each section; mini-topics authored by world-renowned experts in the respective key areas for their personal perspective; and a compendium of practical resources, such as glossary, references, best articles, and top companies. The goal of the book is to inspire clinicians to embrace the artificial intelligence methodologies as well as to educate data scientists about the medical ecosystem, in order to create a transformational paradigm for healthcare and medicine by using this emerging new technology. - Covers a wide range of relevant topics from cloud computing, intelligent agents, to deep reinforcement learning and internet of everything - Presents the concepts of artificial intelligence and its applications in an easy-to-understand format accessible to clinicians and data scientists - Discusses how artificial intelligence can be utilized in a myriad of subspecialties and imagined of the future - Delineates the necessary elements for successful implementation of artificial intelligence in medicine and healthcare |
data science in clinical trials: Strategy and Statistics in Clinical Trials Joseph Tal, 2011-07-14 Delineates the statistical building blocks and concepts of clinical trials. |
data science in clinical trials: Fundamentals of Clinical Trials Lawrence M. Friedman, Curt Furberg, David L. DeMets, 1998 This classic reference, now updated with the newest applications and results, addresses the fundamentals of such trials based on sound scientific methodology, statistical principles, and years of accumulated experience by the three authors. |
data science in clinical trials: Clinical Trials Tom Brody, 2016-02-19 Clinical Trials, Second Edition, offers those engaged in clinical trial design a valuable and practical guide. This book takes an integrated approach to incorporate biomedical science, laboratory data of human study, endpoint specification, legal and regulatory aspects and much more with the fundamentals of clinical trial design. It provides an overview of the design options along with the specific details of trial design and offers guidance on how to make appropriate choices. Full of numerous examples and now containing actual decisions from FDA reviewers to better inform trial design, the 2nd edition of Clinical Trials is a must-have resource for early and mid-career researchers and clinicians who design and conduct clinical trials. - Contains new and fully revised material on key topics such as biostatistics, biomarkers, orphan drugs, biosimilars, drug regulations in Europe, drug safety, regulatory approval and more - Extensively covers the study schema and related features of study design - Incorporates laboratory data from studies on human patients to provide a concrete tool for understanding the concepts in the design and conduct of clinical trials - Includes decisions made by FDA reviewers when granting approval of a drug as real world learning examples for readers |
data science in clinical trials: A Practical Guide to Managing Clinical Trials JoAnn Pfeiffer, Cris Wells, 2017-05-18 A Practical Guide to Managing Clinical Trials is a basic, comprehensive guide to conducting clinical trials. Designed for individuals working in research site operations, this user-friendly reference guides the reader through each step of the clinical trial process from site selection, to site set-up, subject recruitment, study visits, and to study close-out. Topics include staff roles/responsibilities/training, budget and contract review and management, subject study visits, data and document management, event reporting, research ethics, audits and inspections, consent processes, IRB, FDA regulations, and good clinical practices. Each chapter concludes with a review of key points and knowledge application. Unique to this book is A View from India, a chapter-by-chapter comparison of clinical trial practices in India versus the U.S. Throughout the book and in Chapter 10, readers will glimpse some of the challenges and opportunities in the emerging and growing market of Indian clinical trials. |
data science in clinical trials: R for Health Data Science Ewen Harrison, Riinu Pius, 2020-12-31 In this age of information, the manipulation, analysis, and interpretation of data have become a fundamental part of professional life; nowhere more so than in the delivery of healthcare. From the understanding of disease and the development of new treatments, to the diagnosis and management of individual patients, the use of data and technology is now an integral part of the business of healthcare. Those working in healthcare interact daily with data, often without realising it. The conversion of this avalanche of information to useful knowledge is essential for high-quality patient care. R for Health Data Science includes everything a healthcare professional needs to go from R novice to R guru. By the end of this book, you will be taking a sophisticated approach to health data science with beautiful visualisations, elegant tables, and nuanced analyses. Features Provides an introduction to the fundamentals of R for healthcare professionals Highlights the most popular statistical approaches to health data science Written to be as accessible as possible with minimal mathematics Emphasises the importance of truly understanding the underlying data through the use of plots Includes numerous examples that can be adapted for your own data Helps you create publishable documents and collaborate across teams With this book, you are in safe hands – Prof. Harrison is a clinician and Dr. Pius is a data scientist, bringing 25 years’ combined experience of using R at the coal face. This content has been taught to hundreds of individuals from a variety of backgrounds, from rank beginners to experts moving to R from other platforms. |
data science in clinical trials: Clinical Trials Duolao Wang, Ameet Bakhai, 2006 This book explains statistics specifically for a medically literate audience. Readers gain not only an understanding of the basics of medical statistics, but also a critical insight into how to review and evaluate clinical trial evidence. |
data science in clinical trials: Neuroscience Trials of the Future National Academies of Sciences, Engineering, and Medicine, Health and Medicine Division, Board on Health Sciences Policy, Forum on Neuroscience and Nervous System Disorders, 2016-11-07 On March 3-4, 2016, the National Academies of Sciences, Engineering, and Medicine's Forum on Neuroscience and Nervous System Disorders held a workshop in Washington, DC, bringing together key stakeholders to discuss opportunities for improving the integrity, efficiency, and validity of clinical trials for nervous system disorders. Participants in the workshop represented a range of diverse perspectives, including individuals not normally associated with traditional clinical trials. The purpose of this workshop was to generate discussion about not only what is feasible now, but what may be possible with the implementation of cutting-edge technologies in the future. |
data science in clinical trials: Data and Safety Monitoring Committees in Clinical Trials Jay Herson, 2016-12-19 Praise for the first edition: Given the author’s years of experience as a statistician and as a founder of the first DMC in pharmaceutical industry trials, I highly recommend this book—not only for experts because of its cogent and organized presentation, but more importantly for young investigators who are seeking information about the logistical and philosophical aspects of a DMC. -S. T. Ounpraseuth, The American Statistician In the first edition of this well-regarded book, the author provided a groundbreaking and definitive guide to best practices in pharmaceutical industry data monitoring committees (DMCs). Maintaining all the material from the first edition and adding substantial new material, Data and Safety Monitoring Committees in Clinical Trials, Second Edition is ideal for training professionals to serve on their first DMC as well as for experienced clinical and biostatistical DMC members, sponsor and regulatory agency staff. The second edition guides the reader through newly emerging DMC responsibilities brought about by regulations emphasizing risk vs benefit and the emergence of risk-based monitoring. It also provides the reader with many new statistical methods, clinical trial designs and clinical terminology that have emerged since the first edition. The references have been updated and the very popular end-of-chapter Q&A section has been supplemented with many new experiences since the first edition. New to the Second Edition: Presents statistical methods, tables, listings and graphs appropriate for safety review, efficacy analysis and risk vs benefit analysis, SPERT and PRISMA initiatives. Newly added interim analysis for efficacy and futility section. DMC responsibilities in SUSARs (Serious Unexpected Serious Adverse Reactions), basket trials, umbrella trials, dynamic treatment strategies /SMART trials, pragmatic trials, biosimilar trials, companion diagnostics, etc. DMC responsibilities for data quality and fraud detection (Fraud Recovery Plan) Use of patient reported outcomes of safety Use of meta analysis and data outside the trial New ideas for training and compensation of DMC members Jay Herson is Senior Associate, Biostatistics, Johns Hopkins Bloomberg School of Public Health where he teaches courses on clinical trials and drug development based on his many years experience in clinical trials in academia and the pharmaceutical industry. |
data science in clinical trials: Introduction to Statistical Methods for Clinical Trials Thomas D. Cook, David L DeMets, 2007-11-19 Clinical trials have become essential research tools for evaluating the benefits and risks of new interventions for the treatment and prevention of diseases, from cardiovascular disease to cancer to AIDS. Based on the authors’ collective experiences in this field, Introduction to Statistical Methods for Clinical Trials presents various statistical topics relevant to the design, monitoring, and analysis of a clinical trial. After reviewing the history, ethics, protocol, and regulatory issues of clinical trials, the book provides guidelines for formulating primary and secondary questions and translating clinical questions into statistical ones. It examines designs used in clinical trials, presents methods for determining sample size, and introduces constrained randomization procedures. The authors also discuss how various types of data must be collected to answer key questions in a trial. In addition, they explore common analysis methods, describe statistical methods that determine what an emerging trend represents, and present issues that arise in the analysis of data. The book concludes with suggestions for reporting trial results that are consistent with universal guidelines recommended by medical journals. Developed from a course taught at the University of Wisconsin for the past 25 years, this textbook provides a solid understanding of the statistical approaches used in the design, conduct, and analysis of clinical trials. |
data science in clinical trials: Statistics and Machine Learning Methods for EHR Data Hulin Wu, Jose Miguel Yamal, Ashraf Yaseen, Vahed Maroufy, 2020-12-09 The use of Electronic Health Records (EHR)/Electronic Medical Records (EMR) data is becoming more prevalent for research. However, analysis of this type of data has many unique complications due to how they are collected, processed and types of questions that can be answered. This book covers many important topics related to using EHR/EMR data for research including data extraction, cleaning, processing, analysis, inference, and predictions based on many years of practical experience of the authors. The book carefully evaluates and compares the standard statistical models and approaches with those of machine learning and deep learning methods and reports the unbiased comparison results for these methods in predicting clinical outcomes based on the EHR data. Key Features: Written based on hands-on experience of contributors from multidisciplinary EHR research projects, which include methods and approaches from statistics, computing, informatics, data science and clinical/epidemiological domains. Documents the detailed experience on EHR data extraction, cleaning and preparation Provides a broad view of statistical approaches and machine learning prediction models to deal with the challenges and limitations of EHR data. Considers the complete cycle of EHR data analysis. The use of EHR/EMR analysis requires close collaborations between statisticians, informaticians, data scientists and clinical/epidemiological investigators. This book reflects that multidisciplinary perspective. |
data science in clinical trials: Statistical Aspects Of The Design And Analysis Of Clinical Trials (Revised Edition) Brian S Everitt, Andrew Pickles, 2004-02-26 Fully updated, this revised edition describes the statistical aspects of both the design and analysis of trials, with particular emphasis on the more recent methods of analysis.About 8000 clinical trials are undertaken annually in all areas of medicine, from the treatment of acne to the prevention of cancer. Correct interpretation of the data from such trials depends largely on adequate design and on performing the appropriate statistical analyses. This book provides a useful guide to medical statisticians and others faced with the often difficult problems of designing and analysing clinical trials./a |
data science in clinical trials: Clinical Research Informatics Rachel Richesson, James Andrews, 2012-02-15 The purpose of the book is to provide an overview of clinical research (types), activities, and areas where informatics and IT could fit into various activities and business practices. This book will introduce and apply informatics concepts only as they have particular relevance to clinical research settings. |
data science in clinical trials: Designing Clinical Research Stephen B. Hulley, Steven R. Cummings, Warren S. Browner, Deborah G. Grady, Thomas B. Newman, 2011-11-30 Designing Clinical Research sets the standard for providing a practical guide to planning, tabulating, formulating, and implementing clinical research, with an easy-to-read, uncomplicated presentation. This edition incorporates current research methodology—including molecular and genetic clinical research—and offers an updated syllabus for conducting a clinical research workshop. Emphasis is on common sense as the main ingredient of good science. The book explains how to choose well-focused research questions and details the steps through all the elements of study design, data collection, quality assurance, and basic grant-writing. All chapters have been thoroughly revised, updated, and made more user-friendly. |
data science in clinical trials: Applications of Machine Learning Prashant Johri, Jitendra Kumar Verma, Sudip Paul, 2020-05-04 This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics. |
data science in clinical trials: Data Monitoring Committees in Clinical Trials Susan S. Ellenberg, Thomas R. Fleming, David L. DeMets, 2003-01-17 There has been substantial growth in the use of data monitoring committees in recent years, by both government agencies and the pharmaceutical industry. This growth has been brought about by increasing recognition of the value of such committees in safeguarding trial participants as well as protecting trial integrity and the validity of conclusions. This very timely book describes the operation of data monitoring committees, and provides an authoritative guide to their establishment, purpose and responsibilities. * Provides a practical overview of data monitoring in clinical trials. * Describes the purpose, responsibilities and operation of data monitoring committees. * Provides directly applicable advice for those managing and conducting clinical trials, and those serving on data monitoring committees. * Gives insight into clinical data monitoring to those sitting on regulatory and ethical committees. * Discusses issues pertinent to those working in clinical trials in both the US and Europe. The practical guidance provided by this book will be of use to professionals working in and/or managing clinical trials, in academic, government and industry settings, particularly medical statisticians, clinicians, trial co-ordinators, and those working in regulatory affairs and bioethics. |
data science in clinical trials: Design of Experiments and Advanced Statistical Techniques in Clinical Research Basavarajaiah D. M., Bhamidipati Narasimha Murthy, 2020-11-05 Recent Statistical techniques are one of the basal evidence for clinical research, a pivotal in handling new clinical research and in evaluating and applying prior research. This book explores various choices of statistical tools and mechanisms, analyses of the associations among different clinical attributes. It uses advanced statistical methods to describe real clinical data sets, when the clinical processes being examined are still in the process. This book also discusses distinct methods for building predictive and probability distribution models in clinical situations and ways to assess the stability of these models and other quantitative conclusions drawn by realistic experimental data sets. Design of experiments and recent posthoc tests have been used in comparing treatment effects and precision of the experimentation. This book also facilitates clinicians towards understanding statistics and enabling them to follow and evaluate the real empirical studies (formulation of randomized control trial) that pledge insight evidence base for clinical practices. This book will be a useful resource for clinicians, postgraduates scholars in medicines, clinical research beginners and academicians to nurture high-level statistical tools with extensive scope. |
data science in clinical trials: Data and Safety Monitoring Committees in Clinical Trials Jay Herson, 2009-03-13 Focusing on the practical clinical and statistical issues that arise in pharmaceutical industry trials, this book summarizes the author’s experience in serving on many data monitoring committees (DMCs) and in heading up a contract research organization that provided statistical support to nearly seventy-five DMCs. It explains the difference in DMC operations between the pharmaceutical industry and National Institutes of Health (NIH)-sponsored trials. Leading you through the types of reports for adverse events and lab values, the author presents the statistical requirements of data monitoring committees and gives advice on how statisticians can best interact with physician members of these committees. He also shows how physicians think differently about safety data than statisticians, proving that both views are needed. |
data science in clinical trials: Translational Biomedical Informatics Bairong Shen, Haixu Tang, Xiaoqian Jiang, 2016-10-31 This book introduces readers to essential methods and applications in translational biomedical informatics, which include biomedical big data, cloud computing and algorithms for understanding omics data, imaging data, electronic health records and public health data. The storage, retrieval, mining and knowledge discovery of biomedical big data will be among the key challenges for future translational research. The paradigm for precision medicine and healthcare needs to integratively analyze not only the data at the same level – e.g. different omics data at the molecular level – but also data from different levels – the molecular, cellular, tissue, clinical and public health level. This book discusses the following major aspects: the structure of cross-level data; clinical patient information and its shareability; and standardization and privacy. It offers a valuable guide for all biologists, biomedical informaticians and clinicians with an interest in Precision Medicine Informatics. |
data science in clinical trials: Oxford Handbook of Medical Statistics Janet Peacock, Philip Peacock, 2011 The majority of medical research involves quantitative methods and so it is essential to be able to understand and interpret statistics. This book shows readers how to develop the skills required to critically appraise research evidence effectively, and how to conduct research and communicate their findings. |
data science in clinical trials: Design and Analysis of Quality of Life Studies in Clinical Trials Diane L. Fairclough, 2002-03-28 More and more frequently, clinical trials include the evaluation of Health-Related Quality of Life (HRQoL), yet many investigators remain unaware of the unique measurement and analysis issues associated with the assessment of HRQoL. At the end of a study, clinicians and statisticians often face challenging and sometimes insurmountable analytic problems. Design and Analysis of Quality of Life Studies in Clinical Trials details these issues and presents a range of solutions. Written from the author's extensive experience in the field, it focuses on the very specific features of QoL data: its longitudinal nature, multidimensionality, and the problem of missing data. The author uses three real clinical trials throughout her discussions to illustrate practical implementation of the strategies and analytic methods presented. As Quality of Life becomes an increasingly important aspect of clinical trials, it becomes essential for clinicians, statisticians, and designers of these studies to understand and meet the challenges this kind of data present. In this book, SAS and S-PLUS programs, checklists, numerous figures, and a clear, concise presentation combine to provide readers with the tools and skills they need to successfully design, conduct, analyze, and report their own studies. |
data science in clinical trials: Principles and Practice of Clinical Research John I. Gallin, Frederick P Ognibene, 2011-04-28 The second edition of this innovative work again provides a unique perspective on the clinical discovery process by providing input from experts within the NIH on the principles and practice of clinical research. Molecular medicine, genomics, and proteomics have opened vast opportunities for translation of basic science observations to the bedside through clinical research. As an introductory reference it gives clinical investigators in all fields an awareness of the tools required to ensure research protocols are well designed and comply with the rigorous regulatory requirements necessary to maximize the safety of research subjects. Complete with sections on the history of clinical research and ethics, copious figures and charts, and sample documents it serves as an excellent companion text for any course on clinical research and as a must-have reference for seasoned researchers.*Incorporates new chapters on Managing Conflicts of Interest in Human Subjects Research, Clinical Research from the Patient's Perspective, The Clinical Researcher and the Media, Data Management in Clinical Research, Evaluation of a Protocol Budget, Clinical Research from the Industry Perspective, and Genetics in Clinical Research *Addresses the vast opportunities for translation of basic science observations to the bedside through clinical research*Delves into data management and addresses how to collect data and use it for discovery*Contains valuable, up-to-date information on how to obtain funding from the federal government |
data science in clinical trials: Sequential Experimentation in Clinical Trials Jay Bartroff, Tze Leung Lai, Mei-Chiung Shih, 2012-12-12 Sequential Experimentation in Clinical Trials: Design and Analysis is developed from decades of work in research groups, statistical pedagogy, and workshop participation. Different parts of the book can be used for short courses on clinical trials, translational medical research, and sequential experimentation. The authors have successfully used the book to teach innovative clinical trial designs and statistical methods for Statistics Ph.D. students at Stanford University. There are additional online supplements for the book that include chapter-specific exercises and information. Sequential Experimentation in Clinical Trials: Design and Analysis covers the much broader subject of sequential experimentation that includes group sequential and adaptive designs of Phase II and III clinical trials, which have attracted much attention in the past three decades. In particular, the broad scope of design and analysis problems in sequential experimentation clearly requires a wide range of statistical methods and models from nonlinear regression analysis, experimental design, dynamic programming, survival analysis, resampling, and likelihood and Bayesian inference. The background material in these building blocks is summarized in Chapter 2 and Chapter 3 and certain sections in Chapter 6 and Chapter 7. Besides group sequential tests and adaptive designs, the book also introduces sequential change-point detection methods in Chapter 5 in connection with pharmacovigilance and public health surveillance. Together with dynamic programming and approximate dynamic programming in Chapter 3, the book therefore covers all basic topics for a graduate course in sequential analysis designs. |
data science in clinical trials: Clinical Data Management Richard K. Rondel, Sheila A. Varley, Colin F. Webb, 2000-02-03 Extensively revised and updated, with the addition of new chapters and authors, this long-awaited second edition covers all aspects of clinical data management. Giving details of the efficient clinical data management procedures required to satisfy both corporate objectives and quality audits by regulatory authorities, this text is timely and an important contribution to the literature. The volume: * is written by well-known and experienced authors in this area * provides new approaches to major topics in clinical data management * contains new chapters on systems software validation, database design and performance measures. It will be invaluable to anyone in the field within the pharmaceutical industry, and to all biomedical professionals working in clinical research. |
data science in clinical trials: Biomarker Analysis in Clinical Trials with R Nusrat Rabbee, 2020-03-11 The world is awash in data. This volume of data will continue to increase. In the pharmaceutical industry, much of this data explosion has happened around biomarker data. Great statisticians are needed to derive understanding from these data. This book will guide you as you begin the journey into communicating, understanding and synthesizing biomarker data. -From the Foreword, Jared Christensen, Vice President, Biostatistics Early Clinical Development, Pfizer, Inc. Biomarker Analysis in Clinical Trials with R offers practical guidance to statisticians in the pharmaceutical industry on how to incorporate biomarker data analysis in clinical trial studies. The book discusses the appropriate statistical methods for evaluating pharmacodynamic, predictive and surrogate biomarkers for delivering increased value in the drug development process. The topic of combining multiple biomarkers to predict drug response using machine learning is covered. Featuring copious reproducible code and examples in R, the book helps students, researchers and biostatisticians get started in tackling the hard problems of designing and analyzing trials with biomarkers. Features: Analysis of pharmacodynamic biomarkers for lending evidence target modulation. Design and analysis of trials with a predictive biomarker. Framework for analyzing surrogate biomarkers. Methods for combining multiple biomarkers to predict treatment response. Offers a biomarker statistical analysis plan. R code, data and models are given for each part: including regression models for survival and longitudinal data, as well as statistical learning models, such as graphical models and penalized regression models. |
data science in clinical trials: Statistical Thinking in Clinical Trials Michael A. Proschan, 2021-11-24 Statistical Thinking in Clinical Trials combines a relatively small number of key statistical principles and several instructive clinical trials to gently guide the reader through the statistical thinking needed in clinical trials. Randomization is the cornerstone of clinical trials and randomization-based inference is the cornerstone of this book. Read this book to learn the elegance and simplicity of re-randomization tests as the basis for statistical inference (the analyze as you randomize principle) and see how re-randomization tests can save a trial that required an unplanned, mid-course design change. Other principles enable the reader to quickly and confidently check calculations without relying on computer programs. The `EZ’ principle says that a single sample size formula can be applied to a multitude of statistical tests. The `O minus E except after V’ principle provides a simple estimator of the log odds ratio that is ideally suited for stratified analysis with a binary outcome. The same principle can be used to estimate the log hazard ratio and facilitate stratified analysis in a survival setting. Learn these and other simple techniques that will make you an invaluable clinical trial statistician. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …