Data Science Major Declaration



  data science major declaration: Topics in Biostatistics Walter T. Ambrosius, 2007-07-06 This book presents a multidisciplinary survey of biostatics methods, each illustrated with hands-on examples. It introduces advanced methods in statistics, including how to choose and work with statistical packages. Specific topics of interest include microarray analysis, missing data techniques, power and sample size, statistical methods in genetics. The book is an essential resource for researchers at every level of their career.
  data science major declaration: Data Science Landscape Usha Mujoo Munshi, Neeta Verma, 2018-03-01 The edited volume deals with different contours of data science with special reference to data management for the research innovation landscape. The data is becoming pervasive in all spheres of human, economic and development activity. In this context, it is important to take stock of what is being done in the data management area and begin to prioritize, consider and formulate adoption of a formal data management system including citation protocols for use by research communities in different disciplines and also address various technical research issues. The volume, thus, focuses on some of these issues drawing typical examples from various domains. The idea of this work germinated from the two day workshop on “Big and Open Data – Evolving Data Science Standards and Citation Attribution Practices”, an international workshop, led by the ICSU-CODATA and attended by over 300 domain experts. The Workshop focused on two priority areas (i) Big and Open Data: Prioritizing, Addressing and Establishing Standards and Good Practices and (ii) Big and Open Data: Data Attribution and Citation Practices. This important international event was part of a worldwide initiative led by ICSU, and the CODATA-Data Citation Task Group. In all, there are 21 chapters (with 21st Chapter addressing four different core aspects) written by eminent researchers in the field which deal with key issues of S&T, institutional, financial, sustainability, legal, IPR, data protocols, community norms and others, that need attention related to data management practices and protocols, coordinate area activities, and promote common practices and standards of the research community globally. In addition to the aspects touched above, the national / international perspectives of data and its various contours have also been portrayed through case studies in this volume.
  data science major declaration: Big Data, Artificial Intelligence, and Data Analytics in Climate Change Research Gaurav Tripathi,
  data science major declaration: Curriculum Handbook with General Information Concerning ... for the United States Air Force Academy United States Air Force Academy, 1993
  data science major declaration: Academic Majors Handbook with General Information ... United States Air Force Academy United States Air Force Academy, 1988
  data science major declaration: Ethical Data Science Anne L. Washington, 2023 Can data science truly serve the public interest? Data-driven analysis shapes many interpersonal, consumer, and cultural experiences yet scientific solutions to social problems routinely stumble. All too often, predictions remain solely a technocratic instrument that sets financial interests against service to humanity. Amidst a growing movement to use science for positive change, Anne L. Washington offers a solution-oriented approach to the ethical challenges of data science. Ethical Data Science empowers those striving to create predictive data technologies that benefit more people. As one of the first books on public interest technology, it provides a starting point for anyone who wants human values to counterbalance the institutional incentives that drive computational prediction. It argues that data science prediction embeds administrative preferences that often ignore the disenfranchised. The book introduces the prediction supply chain to highlight moral questions alongside the interlocking legal and commercial interests influencing data science. Structured around a typical data science workflow, the book systematically outlines the potential for more nuanced approaches to transforming data into meaningful patterns. Drawing on arts and humanities methods, it encourages readers to think critically about the full human potential of data science step-by-step. Situating data science within multiple layers of effort exposes dependencies while also pinpointing opportunities for research ethics and policy interventions. This approachable process lays the foundation for broader conversations with a wide range of audiences. Practitioners, academics, students, policy makers, and legislators can all learn how to identify social dynamics in data trends, reflect on ethical questions, and deliberate over solutions. The book proves the limits of predictive technology controlled by the few and calls for more inclusive data science.
  data science major declaration: Data Science with Jupyter Gupta Prateek, 2019-09-20 Step-by-step guide to practising data science techniques with Jupyter notebooksKey features Acquire Python skills to do independent data science projects Learn the basics of linear algebra and statistical science in Python way Understand how and when they're used in data science Build predictive models, tune their parameters and analyze performance in few steps Cluster, transform, visualize, and extract insights from unlabelled datasets Learn how to use matplotlib and seaborn for data visualization Implement and save machine learning models for real-world business scenarios Description Modern businesses are awash with data, making data driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with just enough knowledge of Python in conjunction with skills to use powerful tool such as Jupyter Notebook in order to succeed in the role of a data scientist. The book starts with a brief introduction to the world of data science and the opportunities you may come across along with an overview of the key topics covered in the book. You will learn how to setup Anaconda installation which comes with Jupyter and preinstalled Python packages. Before diving in to several supervised, unsupervised and other machine learning techniques, you'll learn how to use basic data structures, functions, libraries and packages required to import, clean, visualize and process data. Several machine learning techniques such as regression, classification, clustering, time-series etc have been explained with the use of practical examples and by comparing the performance of various models. By the end of the book, you will come across few case studies to put your knowledge to practice and solve real-life business problems such as building a movie recommendation engine, classifying spam messages, predicting the ability of a borrower to repay loan on time and time series forecasting of housing prices. Remember to practice additional examples provided in the code bundle of the book to master these techniques.Who this book is forThe book is intended for anyone looking for a career in data science, all aspiring data scientists who want to learn the most powerful programming language in Machine Learning or working professionals who want to switch their career in Data Science. While no prior knowledge of Data Science or related technologies is assumed, it will be helpful to have some programming experience.Table of contents1. Data Science Fundamentals2. Installing Software and Setting up3. Lists and Dictionaries4. Function and Packages5. NumPy Foundation6. Pandas and Dataframe7. Interacting with Databases8. Thinking Statistically in Data Science9. How to import data in Python?10. Cleaning of imported data11. Data Visualization12. Data Pre-processing13. Supervised Machine Learning14. Unsupervised Machine Learning15. Handling Time-Series Data16. Time-Series Methods 17. Case Study - 118. Case Study - 219. Case Study - 320. Case Study - 4About the authorPrateek is a Data Enthusiast and loves the data driven technologies. Prateek has total 7 years of experience and currently he is working as a Data Scientist in an MNC. He has worked with finance and retail clients and has developed Machine Learning and Deep Learning solutions for their business. His keen area of interest is in natural language processing and in computer vision. In leisure he writes posts about Data Science with Python in his blog.
  data science major declaration: Practical Peer-to-Peer Teaching and Learning on the Social Web Hai-Jew, Shalin, 2021-11-19 On the Social Web, people share their enthusiasms and expertise on almost every topic, and based on this, learners can find resources created by individuals with varying expertise. Through this trend and the wide availability of video cameras and authoring tools, people are creating DIY resources and sharing their knowledge, skills, and abilities broadly. While these resources are increasing in availability, what has not been explored is the effectiveness of these resources, peer-to-peer teaching and learning, and how well this content prepares learners for professional roles. Practical Peer-to-Peer Teaching and Learning on the Social Web explores the efficacies of online teaching and learning with materials by peers and provides insights into what is made available for teaching and learning by the broad public. It also considers intended and unintended outcomes of open-shared learning online and discusses practical ethics in teaching and learning online. Covering topics such as learner roles and instructional design, it is ideal for teachers, instructional designers and developers, software developers, user interface designers, researchers, academicians, and students.
  data science major declaration: Scala: Guide for Data Science Professionals Pascal Bugnion, Arun Manivannan, Patrick R. Nicolas, 2017-02-24 Scala will be a valuable tool to have on hand during your data science journey for everything from data cleaning to cutting-edge machine learning About This Book Build data science and data engineering solutions with ease An in-depth look at each stage of the data analysis process — from reading and collecting data to distributed analytics Explore a broad variety of data processing, machine learning, and genetic algorithms through diagrams, mathematical formulations, and source code Who This Book Is For This learning path is perfect for those who are comfortable with Scala programming and now want to enter the field of data science. Some knowledge of statistics is expected. What You Will Learn Transfer and filter tabular data to extract features for machine learning Read, clean, transform, and write data to both SQL and NoSQL databases Create Scala web applications that couple with JavaScript libraries such as D3 to create compelling interactive visualizations Load data from HDFS and HIVE with ease Run streaming and graph analytics in Spark for exploratory analysis Bundle and scale up Spark jobs by deploying them into a variety of cluster managers Build dynamic workflows for scientific computing Leverage open source libraries to extract patterns from time series Master probabilistic models for sequential data In Detail Scala is especially good for analyzing large sets of data as the scale of the task doesn't have any significant impact on performance. Scala's powerful functional libraries can interact with databases and build scalable frameworks — resulting in the creation of robust data pipelines. The first module introduces you to Scala libraries to ingest, store, manipulate, process, and visualize data. Using real world examples, you will learn how to design scalable architecture to process and model data — starting from simple concurrency constructs and progressing to actor systems and Apache Spark. After this, you will also learn how to build interactive visualizations with web frameworks. Once you have become familiar with all the tasks involved in data science, you will explore data analytics with Scala in the second module. You'll see how Scala can be used to make sense of data through easy to follow recipes. You will learn about Bokeh bindings for exploratory data analysis and quintessential machine learning with algorithms with Spark ML library. You'll get a sufficient understanding of Spark streaming, machine learning for streaming data, and Spark graphX. Armed with a firm understanding of data analysis, you will be ready to explore the most cutting-edge aspect of data science — machine learning. The final module teaches you the A to Z of machine learning with Scala. You'll explore Scala for dependency injections and implicits, which are used to write machine learning algorithms. You'll also explore machine learning topics such as clustering, dimentionality reduction, Naive Bayes, Regression models, SVMs, neural networks, and more. This learning path combines some of the best that Packt has to offer into one complete, curated package. It includes content from the following Packt products: Scala for Data Science, Pascal Bugnion Scala Data Analysis Cookbook, Arun Manivannan Scala for Machine Learning, Patrick R. Nicolas Style and approach A complete package with all the information necessary to start building useful data engineering and data science solutions straight away. It contains a diverse set of recipes that cover the full spectrum of interesting data analysis tasks and will help you revolutionize your data analysis skills using Scala.
  data science major declaration: FOUNDATION OF DATA SCIENCE Dr. Santosh Kumar Sahu, Dr. Herison Surbakti, Ismail Keshta, Dr. Haewon Byeon, 2023-08-21 The 1960s saw the beginning of computer science as an academic field of study. The programming languages, compilers, and operating systems, as well as the mathematical theory that underpinned these fields, were the primary focuses of this course. Finite automata, regular expressions, context-free languages, and computability were some of the topics that were addressed in theoretical computer science courses. In the 1970s, the study of algorithms became an essential component of theory when it had previously been neglected. The goal was to find practical applications for computers. At this time, a significant shift is taking place, and more attention is being paid to the diverse range of applications. This shift came about for a variety of different causes. The convergence of computer and communication technologies has been a significant contributor to this change. Our current conception of data and how best to work with it in a contemporary environment has to be revised in light of recent advances in the capacity to monitor, collect, and store data in a variety of domains, including the natural sciences, business, and other areas. The rise of the internet and social networks as fundamental components of everyday life carries with it a wealth of theoretical possibilities as well as difficulties. Traditional subfields of computer science continue to hold a significant amount of weight in the field as a whole, but researchers of the future will focus more on how to use computers to comprehend and extract usable information from massive amounts of data arising from applications rather than how to make computers useful for solving particular problems in a well-defined manner. With this in mind, we have prepared this book to cover the theory that we anticipate will be important in the next 40 years, in the same way that a grasp of automata theory, algorithms, and other similar areas provided students an advantage in the previous 40 years. An increased focus on probability, statistical approaches, and numerical methods is one of the key shifts that has taken place. The book's early draughts have been assigned reading at a variety of academic levels, from undergraduate to graduate. The appendix contains the necessary background information for a course taken at the 1 | P a ge undergraduate level. Because of this, the appendix contains problems for your homework.
  data science major declaration: The Recent Advances in Transdisciplinary Data Science Henry Han, Erich Baker, 2023-01-28 This book constitutes the refereed proceedings of the First Southwest Data Science Conference, on The Recent Advances in Transdisciplinary Data Science, SDSC 2022, held in Waco, TX, USA, during March 25–26, 2022. The 14 full papers and 2 short papers included in this book were carefully reviewed and selected from 72 submissions. They were organized in topical sections as follows: Business and social data science; Health and biological data science; Applied data science, artificial intelligence, and data engineering.
  data science major declaration: A Tour of Data Science Nailong Zhang, 2020-11-11 A Tour of Data Science: Learn R and Python in Parallel covers the fundamentals of data science, including programming, statistics, optimization, and machine learning in a single short book. It does not cover everything, but rather, teaches the key concepts and topics in Data Science. It also covers two of the most popular programming languages used in Data Science, R and Python, in one source. Key features: Allows you to learn R and Python in parallel Cover statistics, programming, optimization and predictive modelling, and the popular data manipulation tools – data.table and pandas Provides a concise and accessible presentation Includes machine learning algorithms implemented from scratch, linear regression, lasso, ridge, logistic regression, gradient boosting trees, etc. Appealing to data scientists, statisticians, quantitative analysts, and others who want to learn programming with R and Python from a data science perspective.
  data science major declaration: Data Science for COVID-19 Utku Kose, Deepak Gupta, Victor Hugo Costa de Albuquerque, Ashish Khanna, 2021-10-22 Data Science for COVID-19, Volume 2: Societal and Medical Perspectives presents the most current and leading-edge research into the applications of a variety of data science techniques for the detection, mitigation, treatment and elimination of the COVID-19 virus. At this point, Cognitive Data Science is the most powerful tool for researchers to fight COVID-19. Thanks to instant data-analysis and predictive techniques, including Artificial Intelligence, Machine Learning, Deep Learning, Data Mining, and computational modeling for processing large amounts of data, recognizing patterns, modeling new techniques, and improving both research and treatment outcomes is now possible. - Provides a leading-edge survey of Data Science techniques and methods for research, mitigation and the treatment of the COVID-19 virus - Integrates various Data Science techniques to provide a resource for COVID-19 researchers and clinicians around the world, including the wide variety of impacts the virus is having on societies and medical practice - Presents insights into innovative, data-oriented modeling and predictive techniques from COVID-19 researchers around the world, including geoprocessing and tracking, lab data analysis, and theoretical views on a variety of technical applications - Includes real-world feedback and user experiences from physicians and medical staff from around the world for medical treatment perspectives, public safety policies and impacts, sociological and psychological perspectives, the effects of COVID-19 in agriculture, economies, and education, and insights on future pandemics
  data science major declaration: Data Science for Social Good Massimo Lapucci, Ciro Cattuto, 2021-10-13 This book is a collection of reflections by thought leaders at first-mover organizations in the exploding field of Data Science for Social Good, meant as the application of knowledge from computer science, complex systems and computational social science to challenges such as humanitarian response, public health, sustainable development. The book provides both an overview of scientific approaches to social impact – identifying a social need, targeting an intervention, measuring impact – and the complementary perspective of funders and philanthropies that are pushing forward this new sector. This book will appeal to students and researchers in the rapidly growing field of data science for social impact, to data scientists at companies whose data could be used to generate more public value, and to decision makers at nonprofits, foundations, and agencies that are designing their own agenda around data.
  data science major declaration: Recent Developments in Data Science and Intelligent Analysis of Information Oleg Chertov, Tymofiy Mylovanov, Yuriy Kondratenko, Janusz Kacprzyk, Vladik Kreinovich, Vadim Stefanuk, 2018-08-04 This book constitutes the proceedings of the XVIII International Conference on Data Science and Intelligent Analysis of Information (ICDSIAI'2018), held in Kiev, Ukraine on June 4-7, 2018. The conference series, which dates back to 2001 when it was known as the Workshop on Intelligent Analysis of Information, was renamed in 2008 to reflect the broadening of its scope and the composition of its organizers and participants. ICDSIAI'2018 brought together a large number of participants from numerous countries in Europe, Asia and the USA. The papers presented addressed novel theoretical developments in methods, algorithms and implementations for the broadly perceived areas of big data mining and intelligent analysis of data and information, representation and processing of uncertainty and fuzziness, including contributions on a range of applications in the fields of decision-making and decision support, economics, education, ecology, law, and various areas of technology. The book is dedicated to the memory of the conference founder, the late Professor Tetiana Taran, an outstanding scientist in the field of artificial intelligence whose research record, vision and personality have greatly contributed to the development of Ukrainian artificial intelligence and computer science.
  data science major declaration: Statistics for Data Science and Policy Analysis Azizur Rahman, 2020-03-31 This book brings together the best contributions of the Applied Statistics and Policy Analysis Conference 2019. Written by leading international experts in the field of statistics, data science and policy evaluation. This book explores the theme of effective policy methods through the use of big data, accurate estimates and modern computing tools and statistical modelling.
  data science major declaration: Computational Intelligence in Data Science Vallidevi Krishnamurthy, Suresh Jaganathan, Kanchana Rajaram, Saraswathi Shunmuganathan, 2021-12-11 This book constitutes the refereed post-conference proceedings of the Fourth IFIP TC 12 International Conference on Computational Intelligence in Data Science, ICCIDS 2021, held in Chennai, India, in March 2021. The 20 revised full papers presented were carefully reviewed and selected from 75 submissions. The papers cover topics such as computational intelligence for text analysis; computational intelligence for image and video analysis; blockchain and data science.
  data science major declaration: Communicating with Data Deborah Nolan, Sara Stoudt, 2021-03-25 Communication is a critical yet often overlooked part of data science. Communicating with Data aims to help students and researchers write about their insights in a way that is both compelling and faithful to the data. General advice on science writing is also provided, including how to distill findings into a story and organize and revise the story, and how to write clearly, concisely, and precisely. This is an excellent resource for students who want to learn how to write about scientific findings, and for instructors who are teaching a science course in communication or a course with a writing component. Communicating with Data consists of five parts. Part I helps the novice learn to write by reading the work of others. Part II delves into the specifics of how to describe data at a level appropriate for publication, create informative and effective visualizations, and communicate an analysis pipeline through well-written, reproducible code. Part III demonstrates how to reduce a data analysis to a compelling story and organize and write the first draft of a technical paper. Part IV addresses revision; this includes advice on writing about statistical findings in a clear and accurate way, general writing advice, and strategies for proof reading and revising. Part V offers advice about communication strategies beyond the page, which include giving talks, building a professional network, and participating in online communities. This book also provides 22 portfolio prompts that extend the guidance and examples in the earlier parts of the book and help writers build their portfolio of data communication.
  data science major declaration: Smart Technologies in Data Science and Communication Jinan Fiaidhi, Debnath Bhattacharyya, N. Thirupathi Rao, 2020-03-30 This book features high-quality, peer-reviewed research papers presented at the International Conference on Smart Technologies in Data Science and Communication (Smart-DSC 2019), held at Vignan’s Institute of Information Technology (Autonomous), Visakhapatnam, Andhra Pradesh, India on 13–14 December 2019. It includes innovative and novel contributions in the areas of data analytics, communication and soft computing.
  data science major declaration: Artificial Intelligence for Data Science in Theory and Practice Mohamed Alloghani, Christopher Thron, Saad Subair, 2022-04-05 This book provides valuable information on effective, state-of-the-art techniques and approaches for governments, students, researchers, practitioners, entrepreneurs and teachers in the field of artificial intelligence (AI). The book explains the data and AI, types and properties of data, the relation between AI algorithms and data, what makes data AI ready, steps of data pre-processing, data quality, data storage and data platforms. Therefore, this book will be interested by AI practitioners, academics, researchers, and lecturers in computer science, artificial intelligence, machine learning and data sciences.
  data science major declaration: Handbook of Data Science Approaches for Biomedical Engineering Valentina Emilia Balas, Vijender Kumar Solanki, Manju Khari, Raghvendra Kumar, 2019-11-13 Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
  data science major declaration: Data Cartels Sarah Lamdan, 2022-11-08 In our digital world, data is power. Information hoarding businesses reign supreme, using intimidation, aggression, and force to maintain influence and control. Sarah Lamdan brings us into the unregulated underworld of these data cartels, demonstrating how the entities mining, commodifying, and selling our data and informational resources perpetuate social inequalities and threaten the democratic sharing of knowledge. Just a few companies dominate most of our critical informational resources. Often self-identifying as data analytics or business solutions operations, they supply the digital lifeblood that flows through the circulatory system of the internet. With their control over data, they can prevent the free flow of information, masterfully exploiting outdated information and privacy laws and curating online information in a way that amplifies digital racism and targets marginalized communities. They can also distribute private information to predatory entities. Alarmingly, everything they're doing is perfectly legal. In this book, Lamdan contends that privatization and tech exceptionalism have prevented us from creating effective legal regulation. This in turn has allowed oversized information oligopolies to coalesce. In addition to specific legal and market-based solutions, Lamdan calls for treating information like a public good and creating digital infrastructure that supports our democratic ideals.
  data science major declaration: COVID-19: Integrating Artificial Intelligence, Data Science, Mathematics, Medicine and Public Health, Epidemiology, Neuroscience, Neurorobotics, and Biomedical Science in Pandemic Management, volume II Atefeh Abedini, Reza Lashgari, 2024-02-29
  data science major declaration: Science of Whole Person Healing Rustum Roy, 2003-12 Papers and reports of research and clinical studies on the effectiveness of treatment modalities, alternative healing devices, energy medicine, and the wide variety of CAM-WPH practices.
  data science major declaration: Assessing and Responding to the Growth of Computer Science Undergraduate Enrollments National Academies of Sciences, Engineering, and Medicine, Division on Engineering and Physical Sciences, Computer Science and Telecommunications Board, Policy and Global Affairs, Board on Higher Education and Workforce, Committee on the Growth of Computer Science Undergraduate Enrollments, 2018-04-28 The field of computer science (CS) is currently experiencing a surge in undergraduate degree production and course enrollments, which is straining program resources at many institutions and causing concern among faculty and administrators about how best to respond to the rapidly growing demand. There is also significant interest about what this growth will mean for the future of CS programs, the role of computer science in academic institutions, the field as a whole, and U.S. society more broadly. Assessing and Responding to the Growth of Computer Science Undergraduate Enrollments seeks to provide a better understanding of the current trends in computing enrollments in the context of past trends. It examines drivers of the current enrollment surge, relationships between the surge and current and potential gains in diversity in the field, and the potential impacts of responses to the increased demand for computing in higher education, and it considers the likely effects of those responses on students, faculty, and institutions. This report provides recommendations for what institutions of higher education, government agencies, and the private sector can do to respond to the surge and plan for a strong and sustainable future for the field of CS in general, the health of the institutions of higher education, and the prosperity of the nation.
  data science major declaration: Enhanced Access to Publicly Funded Data for Science, Technology and Innovation OECD, 2020-04-30 This report presents current policy practice to promote access to publicly funded data for science, technology and innovation, as well as policy challenges for the future. It examines national policies and international initiatives, and identifies seven issues that require policy attention.
  data science major declaration: Anthropology and Climate Change Susan A. Crate, Mark Nuttall, 2016-03-31 The first edition of Anthropology and Climate Change (2009) pioneered the study of climate change through the lens of anthropology, covering the relation between human cultures and the environment from prehistoric times to the present. This second, heavily revised edition brings the material on this rapidly changing field completely up to date, with major scholars from around the world mapping out trajectories of research and issuing specific calls for action. The new edition introduces new “foundational” chapters—laying out what anthropologists know about climate change today, new theoretical and practical perspectives, insights gleaned from sociology, and international efforts to study and curb climate change—making the volume a perfect introductory textbook; presents a series of case studies—both new case studies and old ones updated and viewed with fresh eyes—with the specific purpose of assessing climate trends; provides a close look at how climate change is affecting livelihoods, especially in the context of economic globalization and the migration of youth from rural to urban areas; expands coverage to England, the Amazon, the Marshall Islands, Tanzania, and Ethiopia; re-examines the conclusions and recommendations of the first volume, refining our knowledge of what we do and do not know about climate change and what we can do to adapt.
  data science major declaration: Interviewing Kathryn Roulston, 2021-09-15 Connecting theory and method can be challenging for novice researchers. Interviewing: A Guide to Theory and Practice draws from, and extends, the author′s earlier 2010 book, and focuses on three interrelated issues, how researchers: theorize research interviews; examine their subject positions in relation to projects and participants; and explore the details of interview interaction to inform practice.
  data science major declaration: Sustainametrics - envisioning a sustainable future with data science Shutaro Takeda, Alexander Ryota Keeley, Shunsuke Managi, Thomas Gloria, 2023-03-08
  data science major declaration: Data Science from Scratch Joel Grus, 2015-04-14 Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
  data science major declaration: International Encyclopedia of Human Geography , 2019-11-29 International Encyclopedia of Human Geography, Second Edition, Fourteen Volume Set embraces diversity by design and captures the ways in which humans share places and view differences based on gender, race, nationality, location and other factors—in other words, the things that make people and places different. Questions of, for example, politics, economics, race relations and migration are introduced and discussed through a geographical lens. This updated edition will assist readers in their research by providing factual information, historical perspectives, theoretical approaches, reviews of literature, and provocative topical discussions that will stimulate creative thinking. Presents the most up-to-date and comprehensive coverage on the topic of human geography Contains extensive scope and depth of coverage Emphasizes how geographers interact with, understand and contribute to problem-solving in the contemporary world Places an emphasis on how geography is relevant in a social and interdisciplinary context
  data science major declaration: Industry and Higher Education Leigh Wood, Lay Peng Tan, Yvonne A. Breyer, Sally Hawse, 2020-01-15 This book is aimed at business schools around the globe. We offer rich case studies, teaching notes and assessment ideas to help business educators embed sustainability in curriculum. These international case studies are situated in Mauritius, Malaysia, Indonesia, Australia and India however they have global applicability. Each chapter is a joint creation with an industry or government partner and uses original research written in the form of a case study. Active learning through case studies opens opportunities to change attitudes and to find creative solutions. In this book, we present ten chapters written as case studies covering a diverse number of sustainability topics – from tourism, health care, human resource management, climate change and supply chain management. Each case study is accompanied by detailed teaching notes and assessment questions as well as marking guides. There are also two chapters discussing sustainability discourse and discipline in higher education. The detailed cases can be immediately applied in the classroom.
  data science major declaration: Governing Digitally Integrated Genetic Resources, Data, and Literature Jerome H. Reichman, Paul F. Uhlir, Tom Dedeurwaerdere, 2016-05-19 This book examines the current legal status of the international genetic information commons and proposes alternative management strategies.
  data science major declaration: Data and Information in Online Environments Edgar Bisset Álvarez, 2021-06-14 This book constitutes the refereed post-conference proceedings of the Second International Conference on Data Information in Online Environments, DIONE 2021, which took place in March 2021. Due to COVID-19 pandemic the conference was held virtually. DIONE 2021 presents theoretical proposals and practical solutions in the treatment, processing and study of data and information produced in online environments, the latest trends in the analysis of network information, media metrics social, data processing technologies and open science. The 40 revised full papers were carefully reviewed and selected from 86 submissions. The papers are grouped in thematical sessions on evaluation of science in social networking environment; scholarly publishing and online communication; and education in online environments.
  data science major declaration: Computational Science and Its Applications – ICCSA 2022 Osvaldo Gervasi, Beniamino Murgante, Eligius M. T. Hendrix, David Taniar, Bernady O. Apduhan, 2022-07-14 The eight-volume set LNCS 13375 – 13382 constitutes the proceedings of the 22nd International Conference on Computational Science and Its Applications, ICCSA 2022, which was held in Malaga, Spain during July 4 – 7, 2022. The first two volumes contain the proceedings from ICCSA 2022, which are the 57 full and 24 short papers presented in these books were carefully reviewed and selected from 279 submissions. The other six volumes present the workshop proceedings, containing 285 papers out of 815 submissions. These six volumes includes the proceedings of the following workshops: ​ Advances in Artificial Intelligence Learning Technologies: Blended Learning, STEM, Computational Thinking and Coding (AAILT 2022); Workshop on Advancements in Applied Machine-learning and Data Analytics (AAMDA 2022); Advances in information Systems and Technologies for Emergency management, risk assessment and mitigation based on the Resilience (ASTER 2022); Advances in Web Based Learning (AWBL 2022); Blockchain and Distributed Ledgers: Technologies and Applications (BDLTA 2022); Bio and Neuro inspired Computing and Applications (BIONCA 2022); Configurational Analysis For Cities (CA Cities 2022); Computational and Applied Mathematics (CAM 2022), Computational and Applied Statistics (CAS 2022); Computational Mathematics, Statistics and Information Management (CMSIM); Computational Optimization and Applications (COA 2022); Computational Astrochemistry (CompAstro 2022); Computational methods for porous geomaterials (CompPor 2022); Computational Approaches for Smart, Conscious Cities (CASCC 2022); Cities, Technologies and Planning (CTP 2022); Digital Sustainability and Circular Economy (DiSCE 2022); Econometrics and Multidimensional Evaluation in Urban Environment (EMEUE 2022); Ethical AI applications for a human-centered cyber society (EthicAI 2022); Future Computing System Technologies and Applications (FiSTA 2022); Geographical Computing and Remote Sensing for Archaeology (GCRSArcheo 2022); Geodesign in Decision Making: meta planning and collaborative design for sustainable and inclusive development (GDM 2022); Geomatics in Agriculture and Forestry: new advances and perspectives (GeoForAgr 2022); Geographical Analysis, Urban Modeling, Spatial Statistics (Geog-An-Mod 2022); Geomatics for Resource Monitoring and Management (GRMM 2022); International Workshop on Information and Knowledge in the Internet of Things (IKIT 2022); 13th International Symposium on Software Quality (ISSQ 2022); Land Use monitoring for Sustanability (LUMS 2022); Machine Learning for Space and Earth Observation Data (MALSEOD 2022); Building multi-dimensional models for assessing complex environmental systems (MES 2022); MOdels and indicators for assessing and measuring the urban settlement deVElopment in the view of ZERO net land take by 2050 (MOVEto0 2022); Modelling Post-Covid cities (MPCC 2022); Ecosystem Services: nature’s contribution to people in practice. Assessment frameworks, models, mapping, and implications (NC2P 2022); New Mobility Choices For Sustainable and Alternative Scenarios (NEMOB 2022); 2nd Workshop on Privacy in the Cloud/Edge/IoT World (PCEIoT 2022); Psycho-Social Analysis of Sustainable Mobility in The Pre- and Post-Pandemic Phase (PSYCHE 2022); Processes, methods and tools towards RESilient cities and cultural heritage prone to SOD and ROD disasters (RES 2022); Scientific Computing Infrastructure (SCI 2022); Socio-Economic and Environmental Models for Land Use Management (SEMLUM 2022); 14th International Symposium on Software Engineering Processes and Applications (SEPA 2022); Ports of the future - smartness and sustainability (SmartPorts 2022); Smart Tourism (SmartTourism 2022); Sustainability Performance Assessment: models, approaches and applications toward interdisciplinary and integrated solutions (SPA 2022); Specifics of smart cities development in Europe (SPEED 2022); Smart and Sustainable Island Communities (SSIC 2022); Theoretical and Computational Chemistryand its Applications (TCCMA 2022); Transport Infrastructures for Smart Cities (TISC 2022); 14th International Workshop on Tools and Techniques in Software Development Process (TTSDP 2022); International Workshop on Urban Form Studies (UForm 2022); Urban Regeneration: Innovative Tools and Evaluation Model (URITEM 2022); International Workshop on Urban Space and Mobilities (USAM 2022); Virtual and Augmented Reality and Applications (VRA 2022); Advanced and Computational Methods for Earth Science Applications (WACM4ES 2022); Advanced Mathematics and Computing Methods in Complex Computational Systems (WAMCM 2022).
  data science major declaration: Data Analytics and Applications of the Wearable Sensors in Healthcare Shabbir Syed-Abdul, Luis Fernandez Luque, Pei-Yun Sabrina Hsueh, Juan M. García-Gomez, Begoña Garcia-Zapirain, 2020-06-17 This book provides a collection of comprehensive research articles on data analytics and applications of wearable devices in healthcare. This Special Issue presents 28 research studies from 137 authors representing 37 institutions from 19 countries. To facilitate the understanding of the research articles, we have organized the book to show various aspects covered in this field, such as eHealth, technology-integrated research, prediction models, rehabilitation studies, prototype systems, community health studies, ergonomics design systems, technology acceptance model evaluation studies, telemonitoring systems, warning systems, application of sensors in sports studies, clinical systems, feasibility studies, geographical location based systems, tracking systems, observational studies, risk assessment studies, human activity recognition systems, impact measurement systems, and a systematic review. We would like to take this opportunity to invite high quality research articles for our next Special Issue entitled “Digital Health and Smart Sensors for Better Management of Cancer and Chronic Diseases” as a part of Sensors journal.
  data science major declaration: Handbook of Research on Social Entrepreneurship and Solidarity Economics Saiz-Álvarez, José Manuel, 2016-05-19 Education programs in social entrepreneurship helps to create and fill jobs devoted to developing the local economy, which has become a dual transfer strategy by which a virtuous circle occurs between a retrofitted educational system based on social entrepreneurship, and vocational students who are highly entrepreneurial. The Handbook of Research on Social Entrepreneurship and Solidarity Economics focuses on practical experience and theoretical models for popularizing the concept of social entrepreneurship as a critical element of economic growth. Emphasizing the ways in which social entrepreneurship benefits developing regions, small and medium enterprises, and low-income communities, this handbook of research is a pivotal reference source for professionals, academics, and graduate-level students in the fields of economics, business administration, sociology, education, politics, and international relations.
  data science major declaration: Political Science Abstracts IFI/Plenum Data Company staff, 2013-11-11 Political Science Abstracts is an annual supplement to the Political Science, Government, and Public Policy Series of The Universal Reference System, which was first published in 1967. All back issues are still available.
  data science major declaration: Web Services: Concepts, Methodologies, Tools, and Applications Management Association, Information Resources, 2018-12-07 Web service technologies are redefining the way that large and small companies are doing business and exchanging information. Due to the critical need for furthering automation, engagement, and efficiency, systems and workflows are becoming increasingly more web-based. Web Services: Concepts, Methodologies, Tools, and Applications is an innovative reference source that examines relevant theoretical frameworks, current practice guidelines, industry standards and standardization, and the latest empirical research findings in web services. Highlighting a range of topics such as cloud computing, quality of service, and semantic web, this multi-volume book is designed for computer engineers, IT specialists, software designers, professionals, researchers, and upper-level students interested in web services architecture, frameworks, and security.
  data science major declaration: Big Data Analytics Mrutyunjaya Panda, Ajith Abraham, Aboul Ella Hassanien, 2018-12-12 Social networking has increased drastically in recent years, resulting in an increased amount of data being created daily. Furthermore, diversity of issues and complexity of the social networks pose a challenge in social network mining. Traditional algorithm software cannot deal with such complex and vast amounts of data, necessitating the development of novel analytic approaches and tools. This reference work deals with social network aspects of big data analytics. It covers theory, practices and challenges in social networking. The book spans numerous disciplines like neural networking, deep learning, artificial intelligence, visualization, e-learning in higher education, e-healthcare, security and intrusion detection.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues …

Belmont Forum Adopts Open Data Principles for Environme…
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to …

Belmont Forum Data Accessibility Statement an…
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …