Data Science Ci Cd

Advertisement



  data science ci cd: Data Science from Scratch Joel Grus, 2015-04-14 Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
  data science ci cd: Data Science on AWS Chris Fregly, Antje Barth, 2021-04-07 With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more
  data science ci cd: DevOps for Data Science Alex Gold, 2024-06-19 Data Scientists are experts at analyzing, modelling and visualizing data but, at one point or another, have all encountered difficulties in collaborating with or delivering their work to the people and systems that matter. Born out of the agile software movement, DevOps is a set of practices, principles and tools that help software engineers reliably deploy work to production. This book takes the lessons of DevOps and aplies them to creating and delivering production-grade data science projects in Python and R. This book’s first section explores how to build data science projects that deploy to production with no frills or fuss. Its second section covers the rudiments of administering a server, including Linux, application, and network administration before concluding with a demystification of the concerns of enterprise IT/Administration in its final section, making it possible for data scientists to communicate and collaborate with their organization’s security, networking, and administration teams. Key Features: • Start-to-finish labs take readers through creating projects that meet DevOps best practices and creating a server-based environment to work on and deploy them. • Provides an appendix of cheatsheets so that readers will never be without the reference they need to remember a Git, Docker, or Command Line command. • Distills what a data scientist needs to know about Docker, APIs, CI/CD, Linux, DNS, SSL, HTTP, Auth, and more. • Written specifically to address the concern of a data scientist who wants to take their Python or R work to production. There are countless books on creating data science work that is correct. This book, on the otherhand, aims to go beyond this, targeted at data scientists who want their work to be than merely accurate and deliver work that matters.
  data science ci cd: Comet for Data Science Angelica Lo Duca, Gideon Mendels, 2022-08-26 Gain the key knowledge and skills required to manage data science projects using Comet Key Features • Discover techniques to build, monitor, and optimize your data science projects • Move from prototyping to production using Comet and DevOps tools • Get to grips with the Comet experimentation platform Book Description This book provides concepts and practical use cases which can be used to quickly build, monitor, and optimize data science projects. Using Comet, you will learn how to manage almost every step of the data science process from data collection through to creating, deploying, and monitoring a machine learning model. The book starts by explaining the features of Comet, along with exploratory data analysis and model evaluation in Comet. You'll see how Comet gives you the freedom to choose from a selection of programming languages, depending on which is best suited to your needs. Next, you will focus on workspaces, projects, experiments, and models. You will also learn how to build a narrative from your data, using the features provided by Comet. Later, you will review the basic concepts behind DevOps and how to extend the GitLab DevOps platform with Comet, further enhancing your ability to deploy your data science projects. Finally, you will cover various use cases of Comet in machine learning, NLP, deep learning, and time series analysis, gaining hands-on experience with some of the most interesting and valuable data science techniques available. By the end of this book, you will be able to confidently build data science pipelines according to bespoke specifications and manage them through Comet. What you will learn • Prepare for your project with the right data • Understand the purposes of different machine learning algorithms • Get up and running with Comet to manage and monitor your pipelines • Understand how Comet works and how to get the most out of it • See how you can use Comet for machine learning • Discover how to integrate Comet with GitLab • Work with Comet for NLP, deep learning, and time series analysis Who this book is for This book is for anyone who has programming experience, and wants to learn how to manage and optimize a complete data science lifecycle using Comet and other DevOps platforms. Although an understanding of basic data science concepts and programming concepts is needed, no prior knowledge of Comet and DevOps is required.
  data science ci cd: Data Science on the Google Cloud Platform Valliappa Lakshmanan, 2017-12-12 Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You’ll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines
  data science ci cd: Data Science in Education Using R Ryan A. Estrellado, Emily Freer, Joshua M. Rosenberg, Isabella C. Velásquez, 2020-10-26 Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a learn by doing approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.
  data science ci cd: Continuous Delivery Jez Humble, David Farley, 2010-07-27 Winner of the 2011 Jolt Excellence Award! Getting software released to users is often a painful, risky, and time-consuming process. This groundbreaking new book sets out the principles and technical practices that enable rapid, incremental delivery of high quality, valuable new functionality to users. Through automation of the build, deployment, and testing process, and improved collaboration between developers, testers, and operations, delivery teams can get changes released in a matter of hours— sometimes even minutes–no matter what the size of a project or the complexity of its code base. Jez Humble and David Farley begin by presenting the foundations of a rapid, reliable, low-risk delivery process. Next, they introduce the “deployment pipeline,” an automated process for managing all changes, from check-in to release. Finally, they discuss the “ecosystem” needed to support continuous delivery, from infrastructure, data and configuration management to governance. The authors introduce state-of-the-art techniques, including automated infrastructure management and data migration, and the use of virtualization. For each, they review key issues, identify best practices, and demonstrate how to mitigate risks. Coverage includes • Automating all facets of building, integrating, testing, and deploying software • Implementing deployment pipelines at team and organizational levels • Improving collaboration between developers, testers, and operations • Developing features incrementally on large and distributed teams • Implementing an effective configuration management strategy • Automating acceptance testing, from analysis to implementation • Testing capacity and other non-functional requirements • Implementing continuous deployment and zero-downtime releases • Managing infrastructure, data, components and dependencies • Navigating risk management, compliance, and auditing Whether you’re a developer, systems administrator, tester, or manager, this book will help your organization move from idea to release faster than ever—so you can deliver value to your business rapidly and reliably.
  data science ci cd: Managing Data Science Kirill Dubovikov, 2019-11-12 Understand data science concepts and methodologies to manage and deliver top-notch solutions for your organization Key FeaturesLearn the basics of data science and explore its possibilities and limitationsManage data science projects and assemble teams effectively even in the most challenging situationsUnderstand management principles and approaches for data science projects to streamline the innovation processBook Description Data science and machine learning can transform any organization and unlock new opportunities. However, employing the right management strategies is crucial to guide the solution from prototype to production. Traditional approaches often fail as they don't entirely meet the conditions and requirements necessary for current data science projects. In this book, you'll explore the right approach to data science project management, along with useful tips and best practices to guide you along the way. After understanding the practical applications of data science and artificial intelligence, you'll see how to incorporate them into your solutions. Next, you will go through the data science project life cycle, explore the common pitfalls encountered at each step, and learn how to avoid them. Any data science project requires a skilled team, and this book will offer the right advice for hiring and growing a data science team for your organization. Later, you'll be shown how to efficiently manage and improve your data science projects through the use of DevOps and ModelOps. By the end of this book, you will be well versed with various data science solutions and have gained practical insights into tackling the different challenges that you'll encounter on a daily basis. What you will learnUnderstand the underlying problems of building a strong data science pipelineExplore the different tools for building and deploying data science solutionsHire, grow, and sustain a data science teamManage data science projects through all stages, from prototype to productionLearn how to use ModelOps to improve your data science pipelinesGet up to speed with the model testing techniques used in both development and production stagesWho this book is for This book is for data scientists, analysts, and program managers who want to use data science for business productivity by incorporating data science workflows efficiently. Some understanding of basic data science concepts will be useful to get the most out of this book.
  data science ci cd: Continuous Integration Paul M. Duvall, Steve Matyas, Andrew Glover, 2007-06-29 For any software developer who has spent days in “integration hell,” cobbling together myriad software components, Continuous Integration: Improving Software Quality and Reducing Risk illustrates how to transform integration from a necessary evil into an everyday part of the development process. The key, as the authors show, is to integrate regularly and often using continuous integration (CI) practices and techniques. The authors first examine the concept of CI and its practices from the ground up and then move on to explore other effective processes performed by CI systems, such as database integration, testing, inspection, deployment, and feedback. Through more than forty CI-related practices using application examples in different languages, readers learn that CI leads to more rapid software development, produces deployable software at every step in the development lifecycle, and reduces the time between defect introduction and detection, saving time and lowering costs. With successful implementation of CI, developers reduce risks and repetitive manual processes, and teams receive better project visibility. The book covers How to make integration a “non-event” on your software development projects How to reduce the amount of repetitive processes you perform when building your software Practices and techniques for using CI effectively with your teams Reducing the risks of late defect discovery, low-quality software, lack of visibility, and lack of deployable software Assessments of different CI servers and related tools on the market The book’s companion Web site, www.integratebutton.com, provides updates and code examples.
  data science ci cd: Data Science in Chemistry Thorsten Gressling, 2020-11-23 The ever-growing wealth of information has led to the emergence of a fourth paradigm of science. This new field of activity – data science – includes computer science, mathematics and a given specialist domain. This book focuses on chemistry, explaining how to use data science for deep insights and take chemical research and engineering to the next level. It covers modern aspects like Big Data, Artificial Intelligence and Quantum computing.
  data science ci cd: Python Data Science Handbook Jake VanderPlas, 2016-11-21 For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
  data science ci cd: Introduction to Data Science Laura Igual, Santi Seguí, 2017-02-22 This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.
  data science ci cd: Data Science on AWS Chris Fregly, Antje Barth, 2021-04-07 With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more
  data science ci cd: Accelerating Discoveries in Data Science and Artificial Intelligence II Frank M. Lin,
  data science ci cd: Devops in Practice Danilo Sato, 2014-04-16 DevOps is a cultural and professional movement that's trying to break these walls. Focused on automation, collaboration, tool sharing and knowledge sharing, DevOps has been revealing that developers and system engineers have a lot to learn from one another. In this book, Danilo Sato will show you how to implement DevOps and Continuous Delivery practices so as to raise your system's deployment frequency at the same time as increasing the production application's stability and robustness. You will learn how to automate a web application's build and deploy phases and the infrastructure management, how to monitor the system deployed to production, how to evolve and migrate an architecture to the cloud and still get to know several other tools that you can use on your company
  data science ci cd: Pipeline as Code Mohamed Labouardy, 2021-11-23 Start thinking about your development pipeline as a mission-critical application. Discover techniques for implementing code-driven infrastructure and CI/CD workflows using Jenkins, Docker, Terraform, and cloud-native services. In Pipeline as Code, you will master: Building and deploying a Jenkins cluster from scratch Writing pipeline as code for cloud-native applications Automating the deployment of Dockerized and Serverless applications Containerizing applications with Docker and Kubernetes Deploying Jenkins on AWS, GCP and Azure Managing, securing and monitoring a Jenkins cluster in production Key principles for a successful DevOps culture Pipeline as Code is a practical guide to automating your development pipeline in a cloud-native, service-driven world. You’ll use the latest infrastructure-as-code tools like Packer and Terraform to develop reliable CI/CD pipelines for numerous cloud-native applications. Follow this book's insightful best practices, and you’ll soon be delivering software that’s quicker to market, faster to deploy, and with less last-minute production bugs. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Treat your CI/CD pipeline like the real application it is. With the Pipeline as Code approach, you create a collection of scripts that replace the tedious web UI wrapped around most CI/CD systems. Code-driven pipelines are easy to use, modify, and maintain, and your entire CI pipeline becomes more efficient because you directly interact with core components like Jenkins, Terraform, and Docker. About the book In Pipeline as Code you’ll learn to build reliable CI/CD pipelines for cloud-native applications. With Jenkins as the backbone, you’ll programmatically control all the pieces of your pipeline via modern APIs. Hands-on examples include building CI/CD workflows for distributed Kubernetes applications, and serverless functions. By the time you’re finished, you’ll be able to swap manual UI-based adjustments with a fully automated approach! What's inside Build and deploy a Jenkins cluster on scale Write pipeline as code for cloud-native applications Automate the deployment of Dockerized and serverless applications Deploy Jenkins on AWS, GCP, and Azure Grasp key principles of a successful DevOps culture About the reader For developers familiar with Jenkins and Docker. Examples in Go. About the author Mohamed Labouardy is the CTO and co-founder of Crew.work, a Jenkins contributor, and a DevSecOps evangelist. Table of Contents PART 1 GETTING STARTED WITH JENKINS 1 What’s CI/CD? 2 Pipeline as code with Jenkins PART 2 OPERATING A SELF-HEALING JENKINS CLUSTER 3 Defining Jenkins architecture 4 Baking machine images with Packer 5 Discovering Jenkins as code with Terraform 6 Deploying HA Jenkins on multiple cloud providers PART 3 HANDS-ON CI/CD PIPELINES 7 Defining a pipeline as code for microservices 8 Running automated tests with Jenkins 9 Building Docker images within a CI pipeline 10 Cloud-native applications on Docker Swarm 11 Dockerized microservices on K8s 12 Lambda-based serverless functions PART 4 MANAGING, SCALING, AND MONITORING JENKINS 13 Collecting continuous delivery metrics 14 Jenkins administration and best practices
  data science ci cd: Data Science with Python Robert Johnson, 2024-10-26 Data Science with Python: Unlocking the Power of Pandas and Numpy is an essential guide for beginners and professionals alike, striving to master the art of data analysis using Python's robust ecosystem. This book delves into the foundational aspects of data science, providing readers with a comprehensive understanding of how to harness Python's capabilities for data manipulation and exploration. By covering key libraries such as Pandas and Numpy, it equips readers with the skills necessary to perform high-performance numerical computations and sophisticated data analysis tasks. Structured to ensure a seamless learning experience, this book introduces essential Python programming concepts and progressively advances to more complex topics in data cleaning, preprocessing, and visualization. Each chapter is crafted to build upon the last, ensuring a coherent progression and a deepening of knowledge. With a series of practical projects, readers will gain hands-on experience in real-world data science applications, learning how to develop predictive models and deploy solutions effectively. Through this approach, the book bridges the gap between theoretical understanding and practical application, empowering readers to unlock the full potential of data science in today's data-driven landscape.
  data science ci cd: Big Data Infrastructure Technologies for Data Analytics Yuri Demchenko,
  data science ci cd: Building Machine Learning Pipelines Hannes Hapke, Catherine Nelson, 2020-07-13 Companies are spending billions on machine learning projects, but it’s money wasted if the models can’t be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You’ll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems. Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. Understand the steps to build a machine learning pipeline Build your pipeline using components from TensorFlow Extended Orchestrate your machine learning pipeline with Apache Beam, Apache Airflow, and Kubeflow Pipelines Work with data using TensorFlow Data Validation and TensorFlow Transform Analyze a model in detail using TensorFlow Model Analysis Examine fairness and bias in your model performance Deploy models with TensorFlow Serving or TensorFlow Lite for mobile devices Learn privacy-preserving machine learning techniques
  data science ci cd: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
  data science ci cd: Data Science for Decision Makers Jon Howells, 2024-07-26 Bridge the gap between business and data science by learning how to interpret machine learning and AI models, manage data teams, and achieve impactful results Key Features Master the concepts of statistics and ML to interpret models and guide decisions Identify valuable AI use cases and manage data science projects from start to finish Empower top data science teams to solve complex problems and build AI products Purchase of the print Kindle book includes a free PDF eBook Book DescriptionAs data science and artificial intelligence (AI) become prevalent across industries, executives without formal education in statistics and machine learning, as well as data scientists moving into leadership roles, must learn how to make informed decisions about complex models and manage data teams. This book will elevate your leadership skills by guiding you through the core concepts of data science and AI. This comprehensive guide is designed to bridge the gap between business needs and technical solutions, empowering you to make informed decisions and drive measurable value within your organization. Through practical examples and clear explanations, you'll learn how to collect and analyze structured and unstructured data, build a strong foundation in statistics and machine learning, and evaluate models confidently. By recognizing common pitfalls and valuable use cases, you'll plan data science projects effectively, from the ground up to completion. Beyond technical aspects, this book provides tools to recruit top talent, manage high-performing teams, and stay up to date with industry advancements. By the end of this book, you’ll be able to characterize the data within your organization and frame business problems as data science problems.What you will learn Discover how to interpret common statistical quantities and make data-driven decisions Explore ML concepts as well as techniques in supervised, unsupervised, and reinforcement learning Find out how to evaluate statistical and machine learning models Understand the data science lifecycle, from development to monitoring of models in production Know when to use ML, statistical modeling, or traditional BI methods Manage data teams and data science projects effectively Who this book is for This book is designed for executives who want to understand and apply data science methods to enhance decision-making. It is also for individuals who work with or manage data scientists and machine learning engineers, such as chief data officers (CDOs), data science managers, and technical project managers.
  data science ci cd: Microsoft Certified: Azure Data Scientist Associate (DP-100) Cybellium, Welcome to the forefront of knowledge with Cybellium, your trusted partner in mastering the cutting-edge fields of IT, Artificial Intelligence, Cyber Security, Business, Economics and Science. Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com
  data science ci cd: Data Science: Neural Networks, Deep Learning, LLMs and Power BI Jagdish Krishanlal Arora, 2024-08-29 I wrote this book as I got an interview offer for Data Analyst. There they asked me a lot of questions and there was an exam. This helped me a lot to write the book based on the interview questions faced by me and the knowledge gained by working on AI projects. I then added all my other knowledge working as a Data Analyst on my other projects and wrote the book. Technical books need a lot of attention, as they need deep checks, but I tried to do my best. Not everything can be included in detail, it is impossible. I have tried to include everything related to Data Science that is presently going on in the industry and the world.
  data science ci cd: Continuous Integration and Delivery with Test-driven Development Amit Bhanushali, Alekhya Achanta, Beena Bhanushali, 2024-03-19 Building tomorrow, today: Seamless integration, continuous deliver KEY FEATURES ● Step-by-step guidance to construct automated software and data CI/CD pipelines. ● Real-world case studies demonstrating CI/CD best practices across diverse organizations and development environments. ● Actionable frameworks to instill an organizational culture of collaboration, quality, and rapid iteration grounded in TDD values. DESCRIPTION As software complexity grows, quality and delivery speed increasingly rely on automated pipelines. This practical guide equips readers to construct robust CI/CD workflows that boost productivity and reliability. Step-by-step walkthroughs detail the technical implementation of continuous practices, while real-world case studies showcase solutions tailored for diverse systems and organizational needs. Master CI/CD, crucial for modern software development, with this book. It compares traditional versus test-driven development, stressing testing's importance. In this book, we will explore CI/CD's principles, benefits, and DevOps integration. We will build robust pipelines covering containerization, version control, and infrastructure as code. Through this book, you will learn about effective CD with monitoring, security, and release management, you will learn how to optimize CI/CD for different scenarios and applications, emphasizing collaboration and automation for success. With actionable best practices grounded in TDD principles, this book teaches how to leverage automated processes to cultivate shared ownership, design simplicity, comprehensive testing, and ultimately deliver exceptional business value. WHAT YOU WILL LEARN ● Construct smooth automated CI/CD pipelines tailored for complex systems. ● Master implementation strategies for diverse development environments. ● Design comprehensive test suites leveraging leading tools and frameworks. ● Instill a collaborative culture grounded in TDD values for ownership and simplicity. ● Optimize release processes for efficiency, quality, and business alignment. WHO THIS BOOK IS FOR This book is ideal for software engineers, developers, testers, and technical leads seeking to improve their CI/CD proficiency. Whether you are starting to explore the tool or looking to deepen your understanding, this book is a valuable resource for anyone eager to learn and master the technology. TABLE OF CONTENTS 1. Adopting a Test-driven Development Mindset 2. Understanding CI/CD Concepts 3. Building the CI/CD Pipeline 4. Ensuring Effective CD 5. Optimizing CI/CD Practices 6. Specialized CI/CD Applications 7. Model Operations: DevOps Pipeline Case Studies 8. Data CI/CD: Emerging Trends and Roles
  data science ci cd: Operating Systems and Infrastructure in Data Science Josef Spillner, 2023-09-22 Programming, DataOps, Data Concepts, Applications, Workflows, Tools, Middleware, Collaborative Platforms, Cloud Facilities Modern data scientists work with a number of tools and operating system facilities in addition to online platforms. Mastering these in combination to manage their data and to deploy software, models and data as ready-to-use online services as well as to perform data science and analysis tasks is in the focus of Operating Systems and Infrastructure in Data Science. Readers will come to understand the fundamental concepts of operating systems and to explore plenty of tools in hands-on tasks and thus gradually develop the skills necessary to compose them for programming in the large, an essential capability in their later career. The book guides students through semester studies, acts as reference knowledge base and aids in acquiring the necessary knowledge, skills and competences especially in self-study settings. A unique feature of the book is the associated access to Edushell, a live environment to practice operating systems and infrastructure tasks.
  data science ci cd: Effective Data Science Infrastructure Ville Tuulos, 2022-08-16 Effective Data Science Infrastructure: How to make data scientists more productive is a hands-on guide to assembling infrastructure for data science and machine learning applications. It reveals the processes used at Netflix and other data-driven companies to manage their cutting edge data infrastructure. In it, you'll master scalable techniques for data storage, computation, experiment tracking, and orchestration that are relevant to companies of all shapes and sizes. You'll learn how you can make data scientists more productive with your existing cloud infrastructure, a stack of open source software, and idiomatic Python.
  data science ci cd: Research Software Engineering Matthias Bannert, 2024-04-17 Research Software Engineering: A Guide to the Open Source Ecosystem strives to give a big-picture overview and an understanding of the opportunities of programming as an approach to analytics and statistics. The book argues that a solid programming skill level is not only well within reach for many but also worth pursuing for researchers and business analysts. The ability to write a program leverages field-specific expertise and fosters interdisciplinary collaboration as source code continues to become an important communication channel. Given the pace of the development in data science, many senior researchers and mentors, alongside non-computer science curricula lack a basic software engineering component. This book fills the gap by providing a dedicated programming-with-data resource to both academic scholars and practitioners. Key Features overview: breakdown of complex data science software stacks into core components applied: source code of figures, tables and examples available and reproducible solely with license cost-free, open source software reader guidance: different entry points and rich references to deepen the understanding of selected aspects
  data science ci cd: Data Science and Data Analytics Amit Kumar Tyagi, 2021-09-22 Data science is a multi-disciplinary field that uses scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured (labeled) and unstructured (unlabeled) data. It is the future of Artificial Intelligence (AI) and a necessity of the future to make things easier and more productive. In simple terms, data science is the discovery of data or uncovering hidden patterns (such as complex behaviors, trends, and inferences) from data. Moreover, Big Data analytics/data analytics are the analysis mechanisms used in data science by data scientists. Several tools, such as Hadoop, R, etc., are used to analyze this large amount of data to predict valuable information and for decision-making. Note that structured data can be easily analyzed by efficient (available) business intelligence tools, while most of the data (80% of data by 2020) is in an unstructured form that requires advanced analytics tools. But while analyzing this data, we face several concerns, such as complexity, scalability, privacy leaks, and trust issues. Data science helps us to extract meaningful information or insights from unstructured or complex or large amounts of data (available or stored virtually in the cloud). Data Science and Data Analytics: Opportunities and Challenges covers all possible areas, applications with arising serious concerns, and challenges in this emerging field in detail with a comparative analysis/taxonomy. FEATURES Gives the concept of data science, tools, and algorithms that exist for many useful applications Provides many challenges and opportunities in data science and data analytics that help researchers to identify research gaps or problems Identifies many areas and uses of data science in the smart era Applies data science to agriculture, healthcare, graph mining, education, security, etc. Academicians, data scientists, and stockbrokers from industry/business will find this book useful for designing optimal strategies to enhance their firm’s productivity.
  data science ci cd: AI-Powered Productivity Dr. Asma Asfour, 2024-07-29 This book, AI-Powered Productivity, aims to provide a guide to understanding, utilizing AI and generative tools in various professional settings. The primary purpose of this book is to offer readers a deep dive into the concepts, tools, and practices that define the current AI landscape. From foundational principles to advanced applications, this book is structured to cater to both beginners and professionals looking to enhance their knowledge and skills in AI. This book is divided into nine chapters, each focusing on a specific aspect of AI and its practical applications: Chapter 1 introduces the basic concepts of AI, its impact on various sectors, and key factors driving its rapid advancement, along with an overview of generative AI tools. Chapter 2 delves into large language models like ChatGPT, Google Gemini, Claude, Microsoft's Turing NLG, and Facebook's BlenderBot, exploring their integration with multimodal technologies and their effects on professional productivity. Chapter 3 offers a practical guide to mastering LLM prompting and customization, including tutorials on crafting effective prompts and advanced techniques, as well as real-world examples of AI applications. Chapter 4 examines how AI can enhance individual productivity, focusing on professional and personal benefits, ethical use, and future trends. Chapter 5 addresses data-driven decision- making, covering data analysis techniques, AI in trend identification, consumer behavior analysis, strategic planning, and product development. Chapter 6 discusses strategic and ethical considerations of AI, including AI feasibility, tool selection, multimodal workflows, and best practices for ethical AI development and deployment. Chapter 7 highlights the role of AI in transforming training and professional development, covering structured training programs, continuous learning initiatives, and fostering a culture of innovation and experimentation. Chapter 8 provides a guide to successfully implementing AI in organizations, discussing team composition, collaborative approaches, iterative development processes, and strategic alignment for AI initiatives. Finally, Chapter 9 looks ahead to the future of work, preparing readers for the AI revolution by addressing training and education, career paths, common fears, and future trends in the workforce. The primary audience for the book is professionals seeking to enhance productivity and organizations or businesses. For professionals, the book targets individuals from various industries, reflecting its aim to reach a broad audience across different professional fields. It is designed for employees at all levels, offering valuable insights to both newcomers to AI and seasoned professionals. Covering a range of topics from foundational concepts to advanced applications, the book is particularly relevant for those interested in improving efficiency, with a strong emphasis on practical applications and productivity tools to optimize work processes. For organizations and businesses, the book serves as a valuable resource for decision-makers and managers, especially with chapters on data-driven decision-making, strategic considerations, and AI implementation. HR and training professionals will find the focus on AI in training and development beneficial for talent management, while IT and technology teams will appreciate the information on AI tools and concepts.
  data science ci cd: SQL Server 2017 Machine Learning Services with R Tomaz Kastrun, Julie Koesmarno, 2018-02-27 Develop and run efficient R scripts and predictive models for SQL Server 2017 Key Features Learn how you can combine the power of R and SQL Server 2017 to build efficient, cost-effective data science solutions Leverage the capabilities of R Services to perform advanced analytics—from data exploration to predictive modeling A quick primer with practical examples to help you get up- and- running with SQL Server 2017 Machine Learning Services with R, as part of database solutions with continuous integration / continuous delivery. Book Description R Services was one of the most anticipated features in SQL Server 2016, improved significantly and rebranded as SQL Server 2017 Machine Learning Services. Prior to SQL Server 2016, many developers and data scientists were already using R to connect to SQL Server in siloed environments that left a lot to be desired, in order to do additional data analysis, superseding SSAS Data Mining or additional CLR programming functions. With R integrated within SQL Server 2017, these developers and data scientists can now benefit from its integrated, effective, efficient, and more streamlined analytics environment. This book gives you foundational knowledge and insights to help you understand SQL Server 2017 Machine Learning Services with R. First and foremost, the book provides practical examples on how to implement, use, and understand SQL Server and R integration in corporate environments, and also provides explanations and underlying motivations. It covers installing Machine Learning Services;maintaining, deploying, and managing code;and monitoring your services. Delving more deeply into predictive modeling and the RevoScaleR package, this book also provides insights into operationalizing code and exploring and visualizing data. To complete the journey, this book covers the new features in SQL Server 2017 and how they are compatible with R, amplifying their combined power. What you will learn Get an overview of SQL Server 2017 Machine Learning Services with R Manage SQL Server Machine Learning Services from installation to configuration and maintenance Handle and operationalize R code Explore RevoScaleR R algorithms and create predictive models Deploy, manage, and monitor database solutions with R Extend R with SQL Server 2017 features Explore the power of R for database administrators Who this book is for This book is for data analysts, data scientists, and database administrators with some or no experience in R but who are eager to easily deliver practical data science solutions in their day-to-day work (or future projects) using SQL Server.
  data science ci cd: Essential PySpark for Scalable Data Analytics Sreeram Nudurupati, 2021-10-29 Get started with distributed computing using PySpark, a single unified framework to solve end-to-end data analytics at scale Key FeaturesDiscover how to convert huge amounts of raw data into meaningful and actionable insightsUse Spark's unified analytics engine for end-to-end analytics, from data preparation to predictive analyticsPerform data ingestion, cleansing, and integration for ML, data analytics, and data visualizationBook Description Apache Spark is a unified data analytics engine designed to process huge volumes of data quickly and efficiently. PySpark is Apache Spark's Python language API, which offers Python developers an easy-to-use scalable data analytics framework. Essential PySpark for Scalable Data Analytics starts by exploring the distributed computing paradigm and provides a high-level overview of Apache Spark. You'll begin your analytics journey with the data engineering process, learning how to perform data ingestion, cleansing, and integration at scale. This book helps you build real-time analytics pipelines that help you gain insights faster. You'll then discover methods for building cloud-based data lakes, and explore Delta Lake, which brings reliability to data lakes. The book also covers Data Lakehouse, an emerging paradigm, which combines the structure and performance of a data warehouse with the scalability of cloud-based data lakes. Later, you'll perform scalable data science and machine learning tasks using PySpark, such as data preparation, feature engineering, and model training and productionization. Finally, you'll learn ways to scale out standard Python ML libraries along with a new pandas API on top of PySpark called Koalas. By the end of this PySpark book, you'll be able to harness the power of PySpark to solve business problems. What you will learnUnderstand the role of distributed computing in the world of big dataGain an appreciation for Apache Spark as the de facto go-to for big data processingScale out your data analytics process using Apache SparkBuild data pipelines using data lakes, and perform data visualization with PySpark and Spark SQLLeverage the cloud to build truly scalable and real-time data analytics applicationsExplore the applications of data science and scalable machine learning with PySparkIntegrate your clean and curated data with BI and SQL analysis toolsWho this book is for This book is for practicing data engineers, data scientists, data analysts, and data enthusiasts who are already using data analytics to explore distributed and scalable data analytics. Basic to intermediate knowledge of the disciplines of data engineering, data science, and SQL analytics is expected. General proficiency in using any programming language, especially Python, and working knowledge of performing data analytics using frameworks such as pandas and SQL will help you to get the most out of this book.
  data science ci cd: The Machine Learning Solutions Architect Handbook David Ping, 2024-04-15 Design, build, and secure scalable machine learning (ML) systems to solve real-world business problems with Python and AWS Purchase of the print or Kindle book includes a free PDF eBook Key Features Go in-depth into the ML lifecycle, from ideation and data management to deployment and scaling Apply risk management techniques in the ML lifecycle and design architectural patterns for various ML platforms and solutions Understand the generative AI lifecycle, its core technologies, and implementation risks Book DescriptionDavid Ping, Head of GenAI and ML Solution Architecture for global industries at AWS, provides expert insights and practical examples to help you become a proficient ML solutions architect, linking technical architecture to business-related skills. You'll learn about ML algorithms, cloud infrastructure, system design, MLOps , and how to apply ML to solve real-world business problems. David explains the generative AI project lifecycle and examines Retrieval Augmented Generation (RAG), an effective architecture pattern for generative AI applications. You’ll also learn about open-source technologies, such as Kubernetes/Kubeflow, for building a data science environment and ML pipelines before building an enterprise ML architecture using AWS. As well as ML risk management and the different stages of AI/ML adoption, the biggest new addition to the handbook is the deep exploration of generative AI. By the end of this book , you’ll have gained a comprehensive understanding of AI/ML across all key aspects, including business use cases, data science, real-world solution architecture, risk management, and governance. You’ll possess the skills to design and construct ML solutions that effectively cater to common use cases and follow established ML architecture patterns, enabling you to excel as a true professional in the field.What you will learn Apply ML methodologies to solve business problems across industries Design a practical enterprise ML platform architecture Gain an understanding of AI risk management frameworks and techniques Build an end-to-end data management architecture using AWS Train large-scale ML models and optimize model inference latency Create a business application using artificial intelligence services and custom models Dive into generative AI with use cases, architecture patterns, and RAG Who this book is for This book is for solutions architects working on ML projects, ML engineers transitioning to ML solution architect roles, and MLOps engineers. Additionally, data scientists and analysts who want to enhance their practical knowledge of ML systems engineering, as well as AI/ML product managers and risk officers who want to gain an understanding of ML solutions and AI risk management, will also find this book useful. A basic knowledge of Python, AWS, linear algebra, probability, and cloud infrastructure is required before you get started with this handbook.
  data science ci cd: Ultimate Azure Data Scientist Associate (DP-100) Certification Guide Rajib Kumar De, 2024-06-26 TAGLINE Empower Your Data Science Journey: From Exploration to Certification in Azure Machine Learning KEY FEATURES ● Offers deep dives into key areas such as data preparation, model training, and deployment, ensuring you master each concept. ● Covers all exam objectives in detail, ensuring a thorough understanding of each topic required for the DP-100 certification. ● Includes hands-on labs and practical examples to help you apply theoretical knowledge to real-world scenarios, enhancing your learning experience. DESCRIPTION Ultimate Azure Data Scientist Associate (DP-100) Certification Guide is your essential resource for achieving the Microsoft Azure Data Scientist Associate certification. This guide covers all exam objectives, helping you design and prepare machine learning solutions, explore data, train models, and manage deployment and retraining processes. The book starts with the basics and advances through hands-on exercises and real-world projects, to help you gain practical experience with Azure's tools and services. The book features certification-oriented Q&A challenges that mirror the actual exam, with detailed explanations to help you thoroughly grasp each topic. Perfect for aspiring data scientists, IT professionals, and analysts, this comprehensive guide equips you with the expertise to excel in the DP-100 exam and advance your data science career. WHAT WILL YOU LEARN ● Design and prepare effective machine learning solutions in Microsoft Azure. ● Learn to develop complete machine learning training pipelines, with or without code. ● Explore data, train models, and validate ML pipelines efficiently. ● Deploy, manage, and optimize machine learning models in Azure. ● Utilize Azure's suite of data science tools and services, including Prompt Flow, Model Catalog, and AI Studio. ● Apply real-world data science techniques to business problems. ● Confidently tackle DP-100 certification exam questions and scenarios. WHO IS THIS BOOK FOR? This book is for aspiring Data Scientists, IT Professionals, Developers, Data Analysts, Students, and Business Professionals aiming to Master Azure Data Science. Prior knowledge of basic Data Science concepts and programming, particularly in Python, will be beneficial for making the most of this comprehensive guide. TABLE OF CONTENTS 1. Introduction to Data Science and Azure 2. Setting Up Your Azure Environment 3. Data Ingestion and Storage in Azure 4. Data Transformation and Cleaning 5. Introduction to Machine Learning 6. Azure Machine Learning Studio 7. Model Deployment and Monitoring 8. Embracing AI Revolution Azure 9. Responsible AI and Ethics 10. Big Data Analytics with Azure 11. Real-World Applications and Case Studies 12. Conclusion and Next Steps Index
  data science ci cd: Why AI/Data Science Projects Fail Joyce Weiner, 2022-06-01 Recent data shows that 87% of Artificial Intelligence/Big Data projects don’t make it into production (VB Staff, 2019), meaning that most projects are never deployed. This book addresses five common pitfalls that prevent projects from reaching deployment and provides tools and methods to avoid those pitfalls. Along the way, stories from actual experience in building and deploying data science projects are shared to illustrate the methods and tools. While the book is primarily for data science practitioners, information for managers of data science practitioners is included in the Tips for Managers sections.
  data science ci cd: Data Science for Business Professionals Probyto Data Science and Consulting Pvt. Ltd., 2020-05-06 Primer into the multidisciplinary world of Data Science KEY FEATURESÊÊ - Explore and use the key concepts of Statistics required to solve data science problems - Use Docker, Jenkins, and Git for Continuous Development and Continuous Integration of your web app - Learn how to build Data Science solutions with GCP and AWS DESCRIPTIONÊ The book will initially explain the What-Why of Data Science and the process of solving a Data Science problem. The fundamental concepts of Data Science, such as Statistics, Machine Learning, Business Intelligence, Data pipeline, and Cloud Computing, will also be discussed. All the topics will be explained with an example problem and will show how the industry approaches to solve such a problem. The book will pose questions to the learners to solve the problems and build the problem-solving aptitude and effectively learn. The book uses Mathematics wherever necessary and will show you how it is implemented using Python with the help of an example dataset.Ê WHAT WILL YOU LEARNÊÊ - Understand the multi-disciplinary nature of Data Science - Get familiar with the key concepts in Mathematics and Statistics - Explore a few key ML algorithms and their use cases - Learn how to implement the basics of Data Pipelines - Get an overview of Cloud Computing & DevOps - Learn how to create visualizations using Tableau WHO THIS BOOK IS FORÊ This book is ideal for Data Science enthusiasts who want to explore various aspects of Data Science. Useful for Academicians, Business owners, and Researchers for a quick reference on industrial practices in Data Science.Ê TABLE OF CONTENTS 1. Data Science in Practice 2. Mathematics Essentials 3. Statistics Essentials 4. Exploratory Data Analysis 5. Data preprocessing 6. Feature Engineering 7. Machine learning algorithms 8. Productionizing ML models 9. Data Flows in Enterprises 10. Introduction to Databases 11. Introduction to Big Data 12. DevOps for Data Science 13. Introduction to Cloud Computing 14. Deploy Model to Cloud 15. Introduction to Business IntelligenceÊ 16. Data Visualization Tools 17. Industry Use Case 1 Ð FormAssist 18. Industry Use Case 2 Ð PeopleReporter 19. Data Science Learning Resources 20. Do It Your Self Challenges 21. MCQs for Assessments
  data science ci cd: Automated Machine Learning on AWS Trenton Potgieter, Jonathan Dahlberg, 2022-04-15 Automate the process of building, training, and deploying machine learning applications to production with AWS solutions such as SageMaker Autopilot, AutoGluon, Step Functions, Amazon Managed Workflows for Apache Airflow, and more Key FeaturesExplore the various AWS services that make automated machine learning easierRecognize the role of DevOps and MLOps methodologies in pipeline automationGet acquainted with additional AWS services such as Step Functions, MWAA, and more to overcome automation challengesBook Description AWS provides a wide range of solutions to help automate a machine learning workflow with just a few lines of code. With this practical book, you'll learn how to automate a machine learning pipeline using the various AWS services. Automated Machine Learning on AWS begins with a quick overview of what the machine learning pipeline/process looks like and highlights the typical challenges that you may face when building a pipeline. Throughout the book, you'll become well versed with various AWS solutions such as Amazon SageMaker Autopilot, AutoGluon, and AWS Step Functions to automate an end-to-end ML process with the help of hands-on examples. The book will show you how to build, monitor, and execute a CI/CD pipeline for the ML process and how the various CI/CD services within AWS can be applied to a use case with the Cloud Development Kit (CDK). You'll understand what a data-centric ML process is by working with the Amazon Managed Services for Apache Airflow and then build a managed Airflow environment. You'll also cover the key success criteria for an MLSDLC implementation and the process of creating a self-mutating CI/CD pipeline using AWS CDK from the perspective of the platform engineering team. By the end of this AWS book, you'll be able to effectively automate a complete machine learning pipeline and deploy it to production. What you will learnEmploy SageMaker Autopilot and Amazon SageMaker SDK to automate the machine learning processUnderstand how to use AutoGluon to automate complicated model building tasksUse the AWS CDK to codify the machine learning processCreate, deploy, and rebuild a CI/CD pipeline on AWSBuild an ML workflow using AWS Step Functions and the Data Science SDKLeverage the Amazon SageMaker Feature Store to automate the machine learning software development life cycle (MLSDLC)Discover how to use Amazon MWAA for a data-centric ML processWho this book is for This book is for the novice as well as experienced machine learning practitioners looking to automate the process of building, training, and deploying machine learning-based solutions into production, using both purpose-built and other AWS services. A basic understanding of the end-to-end machine learning process and concepts, Python programming, and AWS is necessary to make the most out of this book.
  data science ci cd: Machine Learning and Data Science Basics Cybellium Ltd, Your Essential Guide to Understanding Data-driven Technologies In a world inundated with data, the ability to harness its power through machine learning and data science is a vital skill. Machine Learning and Data Science Basics is your gateway to unraveling the complexities of these transformative technologies, offering a comprehensive introduction to the fundamental concepts that drive data-driven decision-making. About the Book: In an era where data has become the driving force behind innovation and growth, understanding the principles of machine learning and data science is no longer optional—it's essential. Machine Learning and Data Science Basics demystifies these disciplines, making them accessible to beginners while providing valuable insights for those looking to expand their knowledge. Key Features: Foundation Building: Start your journey by grasping the core concepts of data science, machine learning, and their intersection. Understand how data drives insights and empowers informed decisions. Data Exploration: Dive into data exploration techniques, learning how to clean, transform, and prepare data for analysis. Discover the crucial role data quality plays in obtaining accurate results. Machine Learning Essentials: Uncover the basics of machine learning algorithms, including supervised and unsupervised learning. Explore how algorithms learn patterns from data and make predictions or classifications. Feature Engineering: Learn the art of feature engineering—the process of selecting and transforming relevant data attributes to improve model performance and accuracy. Model Evaluation: Delve into model evaluation techniques to assess the performance of machine learning models. Understand metrics such as accuracy, precision, recall, and F1 score. Introduction to Data Science Tools: Familiarize yourself with essential data science tools and libraries, such as Python, NumPy, pandas, and scikit-learn. Gain hands-on experience with practical examples. Real-World Applications: Explore case studies showcasing how machine learning and data science are applied across industries. From recommendation systems to fraud detection, understand their impact on diverse domains. Why This Book Matters: In a landscape driven by data, proficiency in machine learning and data science is a competitive advantage. Machine Learning and Data Science Basics empowers individuals, students, and professionals to build a strong foundation in these fields, enabling them to contribute meaningfully to data-driven projects. Who Should Read This Book: Students and Beginners: Build a solid understanding of the principles underlying machine learning and data science. Professionals Seeking Knowledge: Enhance your expertise by familiarizing yourself with foundational concepts. Business Leaders: Grasp the potential of data-driven technologies to make informed strategic decisions. Embark on Your Data Journey: The era of data-driven decision-making is here to stay. Machine Learning and Data Science Basics equips you with the knowledge needed to embark on this exciting journey. Whether you're a novice eager to understand the basics or a professional looking to enhance your skill set, this book will guide you through the transformative landscape of machine learning and data science, setting the stage for continued learning and growth. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com
  data science ci cd: Data Analytics in the AWS Cloud Joe Minichino, 2023-04-06 A comprehensive and accessible roadmap to performing data analytics in the AWS cloud In Data Analytics in the AWS Cloud: Building a Data Platform for BI and Predictive Analytics on AWS, accomplished software engineer and data architect Joe Minichino delivers an expert blueprint to storing, processing, analyzing data on the Amazon Web Services cloud platform. In the book, you’ll explore every relevant aspect of data analytics—from data engineering to analysis, business intelligence, DevOps, and MLOps—as you discover how to integrate machine learning predictions with analytics engines and visualization tools. You’ll also find: Real-world use cases of AWS architectures that demystify the applications of data analytics Accessible introductions to data acquisition, importation, storage, visualization, and reporting Expert insights into serverless data engineering and how to use it to reduce overhead and costs, improve stability, and simplify maintenance A can't-miss for data architects, analysts, engineers and technical professionals, Data Analytics in the AWS Cloud will also earn a place on the bookshelves of business leaders seeking a better understanding of data analytics on the AWS cloud platform.
  data science ci cd: Smarter Data Science Neal Fishman, Cole Stryker, 2020-04-09 Organizations can make data science a repeatable, predictable tool, which business professionals use to get more value from their data Enterprise data and AI projects are often scattershot, underbaked, siloed, and not adaptable to predictable business changes. As a result, the vast majority fail. These expensive quagmires can be avoided, and this book explains precisely how. Data science is emerging as a hands-on tool for not just data scientists, but business professionals as well. Managers, directors, IT leaders, and analysts must expand their use of data science capabilities for the organization to stay competitive. Smarter Data Science helps them achieve their enterprise-grade data projects and AI goals. It serves as a guide to building a robust and comprehensive information architecture program that enables sustainable and scalable AI deployments. When an organization manages its data effectively, its data science program becomes a fully scalable function that’s both prescriptive and repeatable. With an understanding of data science principles, practitioners are also empowered to lead their organizations in establishing and deploying viable AI. They employ the tools of machine learning, deep learning, and AI to extract greater value from data for the benefit of the enterprise. By following a ladder framework that promotes prescriptive capabilities, organizations can make data science accessible to a range of team members, democratizing data science throughout the organization. Companies that collect, organize, and analyze data can move forward to additional data science achievements: Improving time-to-value with infused AI models for common use cases Optimizing knowledge work and business processes Utilizing AI-based business intelligence and data visualization Establishing a data topology to support general or highly specialized needs Successfully completing AI projects in a predictable manner Coordinating the use of AI from any compute node. From inner edges to outer edges: cloud, fog, and mist computing When they climb the ladder presented in this book, businesspeople and data scientists alike will be able to improve and foster repeatable capabilities. They will have the knowledge to maximize their AI and data assets for the benefit of their organizations.
  data science ci cd: Engineering MLOps Emmanuel Raj, 2021-04-19 Get up and running with machine learning life cycle management and implement MLOps in your organization Key FeaturesBecome well-versed with MLOps techniques to monitor the quality of machine learning models in productionExplore a monitoring framework for ML models in production and learn about end-to-end traceability for deployed modelsPerform CI/CD to automate new implementations in ML pipelinesBook Description Engineering MLps presents comprehensive insights into MLOps coupled with real-world examples in Azure to help you to write programs, train robust and scalable ML models, and build ML pipelines to train and deploy models securely in production. The book begins by familiarizing you with the MLOps workflow so you can start writing programs to train ML models. Then you'll then move on to explore options for serializing and packaging ML models post-training to deploy them to facilitate machine learning inference, model interoperability, and end-to-end model traceability. You'll learn how to build ML pipelines, continuous integration and continuous delivery (CI/CD) pipelines, and monitor pipelines to systematically build, deploy, monitor, and govern ML solutions for businesses and industries. Finally, you'll apply the knowledge you've gained to build real-world projects. By the end of this ML book, you'll have a 360-degree view of MLOps and be ready to implement MLOps in your organization. What you will learnFormulate data governance strategies and pipelines for ML training and deploymentGet to grips with implementing ML pipelines, CI/CD pipelines, and ML monitoring pipelinesDesign a robust and scalable microservice and API for test and production environmentsCurate your custom CD processes for related use cases and organizationsMonitor ML models, including monitoring data drift, model drift, and application performanceBuild and maintain automated ML systemsWho this book is for This MLOps book is for data scientists, software engineers, DevOps engineers, machine learning engineers, and business and technology leaders who want to build, deploy, and maintain ML systems in production using MLOps principles and techniques. Basic knowledge of machine learning is necessary to get started with this book.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open …

Belmont Forum Adopts Open Data Principles for Environme…
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data …

Belmont Forum Data Accessibility Statement an…
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. …

ECSc - Massachusetts Institute of Technology
Data Science 6.3900 Introduction to Machine Learning (12) EECS Project-based (9) 6.UAT Oral Communication (CI-M)2 or 15.276 Communicating with Data (CI-M) Economics Project-based …

Roadmap: Journalism – Bachelor of Science CI-BS-JNL …
Roadmap: Journalism – Bachelor of Science CI-BS-JNL College of Communication and Information School of Journalism and Mass Communication Catalog Year: 2015-2016 . 1. …

An Introduction to Graphical Modeling of CI/CD Workflows
CI/CD pipelines (cf. Fig.1), improves the development experience through auto-mated feedback cycles, and the support of even complex assembly processes. Unfortunately, the term pipeline …

California Department of Education
%PDF-1.6 %âãÏÓ 1713 0 obj >stream hÞ¼XÛnã8 ý‚ý û2‹EO‰ I 0 ÄI§/¹L’îÙÙl°Pl:ö¶b¹%% ô×ï)Rv| 3hô MŠ,’Å*òœ*Ë8ŠD$d I!¥ä† R ...

CI/CD Basics & Code Coverage - RIT
What is a CI/CD Pipeline? §Continuous Integration is development practice where developers integrate all code into a shared repository, frequently. •Once code is merged, the automated …

Introduction to Data Science A Beginner's Guide
©DatabaseTown.com • Bionomial Data ( Variable data with only two options e.g. good or bad, true or false ) • Nominal or Unordered Data (Variable data which is in unordered form e.g. red, …

AI Resource Kit - Computer Science (CA Dept of Education)
Al systems analyze large amounts of data. They use complex mathematics to guide output. Al systems improve their results as they continually receive data and feedback. Reframing Al in …

NASA Guidelines for Promoting Scientific and Research Integrity
OSTP Office of Science and Technology Policy P.L. Public Law ... (MDAAs) and Center Directors (CD) have responsibility for the technical, scientific, and programmatic accuracy of all …

Cybersecurity Innovation for Cyberinfrastructure (CICI) - NSF
Scientific data and workloads can be fundamentally different from those seen in traditional network, storage, and computing scenarios. Individual platforms, projects, and data may have …

Leveraging DevOps for Scientific Computing - arXiv.org
CI/CD Engine The newest and most prominent element of modern DevOps workflows is the CI/CD engine. Continuous Integra-tion (CI) is the concept of merging incremental code …

Data Science VI sem syllabus _1_ - RAJIV GANDHI …
CSE-Data Science/Data Science, VI semester CD 602- Computer Networks Course Outcomes:After completion of the course students will be able to 1. Characterize and …

The iPlant collaborative: cyberinfrastructure for plant …
Plant science data range in scope from complete genome sequences of individual plant varieties to geospatial maps of plant species distribution across the entire biosphere ( Hughes, 2006; …

Ingénieur en Agronomie Option Data science pour …
La formation est ouverte depuis 2017 sous le label Science des Données-Data Science sur Montpellier ... La formation existait à l'Institut Agro Rennes-Angers avant de devenir Science …

Curriculum for Early Exposure to Clinical Informatics and Data …
Informatics-Data Science (CI-DS) curriculum aimed at UME and GME learners that incorporates practical data science competencies and reflect on lessons learned from the inau-gural …

Contextual Integrity Up and Down the Data Food Chain
lower-order data, the crucial question is whether privacy norms governing lower-order data are sufficient for the inferred higher-order data. While CI has a response to this question, a greater …

Practitioners guide to MLOps: - Google Search
Data processing 11 Model training 11 Model evaluation 12 Model serving 12 Online experimentation 13 Model monitoring 13 ML pipelines 13 ... iar with basic machine learning …

Introduction to Data Science - MRCET
Data science has been behind resolving some of our most common daily tasks for several years. Most of the scientific methods that power data science are not new and they havebeen out …

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY …
R18 B.Tech. CSE (Data Science) III & IV Year JNTU Hyderabad INTRODUCTION TO DATA SCIENCE B.Tech. III Year I Sem. L T P C 3 0 0 3 Course Objectives: 1. Learn concepts, …

Transforming Science through Advanced Cyberinfrastructure
Evolving Science, CI Landscapes Evolving Science/Engineering Landscape Large scales, high-resolution, multi-scale, multi-physics simulations / Complex, dynamic workflows Emerging data …

Data Mesh eBook - Oracle
Data Mesh is an emerging hot topic for enterprise software that puts ... gains in CI/CD, no-code and self-serve data pipeline tooling, and agile development ... source systems, improves the …

Round3 Cut-Off ranks after Engineering Allotment Notified on …
E001 Acharya Institute of Technology CD-Computer Science & Engineering (Data Science) 24270 ... CI-Computer Science & Engineering (Artificial Intelligence & Machine Learning) 75956 E007 …

UG Programs 2022-23 CV CC Civil Engineering Stream …
UG Programs 2022-23 Sl. No. UG Programs Course Code Stream 1 1 Civil engineering CV 2 2 Ceramics and Cement Technology CC 3 3 Construction Technology & Management CT 4 4 …

AWS Cloud Adoption Framework
Data Science Business Insights Data Monetization Product Management Strategic Partnership 17. Business Perspective: Strategy and Outcomes 18. The business perspective focuses on …

UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE …
In contemporary science, data sharing is a key element for scientific collaboration and progress. In the context of open science and e-science, Information Science (CI) and information …

Data Science : fondamentaux et études de cas: Machine …
Éric Biernat dirige l’activité Big Data Analytics chez OCTO Technology, l’un des leaders français sur le marché de la data science et des big data. Il a embrassé le mouvement Big Data …

NSF Cyberinfrastructure Cybersecurity: Research Challenges to ...
Foster a cyberinfrastructure (CI) ecosystem to transform science and engineering research…through Research CI and CI research NSF Office of Advanced Cyberinfrastructure …

OFFRES DE FORMATION - Centre INP-HB / lecnam
www.lecnam.inphb.ci; centre.cnam@inphb.ci +225 22 44 48 78 / +225 89 98 01 99 / +225 89 08 73 76 INGENIEUR BAC+5 Diplôme d’Ingénieur Spécialité BATIMENT ET TRAVAUX …

Surveillance, Epidemiology, and End Results (SEER)
SEER Data and Software. The SEER research data include SEER incidence and population data associated by age, sex, race, year of diagnosis, and geographic areas. Options for accessing …

What is a CI? - Evidence-Based Nursing
data. The width or range of the CI indicates the reliability of the data (sometimes known as precision). A narrow CI implies high precision and credible values whereas a wide interval …

Roadmap: Digital Media Production- Digital Film – Bachelor of …
Roadmap: Digital Media Production- Digital Film – Bachelor of Science CI-BS-DMP-DFM College of Communication and Information School of Journalism and Mass Communication Catalog …

CI/CD Pipeline from Android to Embedded Devices with …
DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM , SWEDEN 2021 CI/CD Pipeline from Android to Embedded Devices …

Roadmap: Public Relations - Bachelor of Science CI-BS-PR …
Aug 5, 2014 · Roadmap: Public Relations - Bachelor of Science CI-BS-PR College of Communication and Information School of Journalism and Mass Communication Catalog …

Cyberinfrastructure Deployments on Public Research Clouds …
vancements in public research CI and an open science revolution around data and software are creating readily available online edu-cational and CI resources for researchers regardless of …

Curriculum for Early Exposure to Clinical Informatics and Data …
Informatics-Data Science (CI-DS) curriculum aimed at UME and GME learners that incorporates practical data science competencies and reflect on lessons learned from the inau-gural …

Statistics or Data Science? What about Machine Learning
data science, three professional communities, all within computer science and/or statistics, are emerging as foundational to data science: (i)Database Managementenables transformation, …

NASA-ISRO SAR (NISAR) Mission Science Users’ Handbook
6 SCIENCE DATA PRODUCTS AND VALIDATION 55 APPROACHES 6.1 SOLID EARTH SCIENCE PRODUCTS 55 6.1.1Theoretical basis of algorithm 55 ... 21 APPENDIX I: DATA …

CI-710 Miniature Leaf Spectrometer
spectral data CID Bio-Science visit us at: www.cid-inc.com Portable Instruments for Precision Plant Measurement Inc. Toll Free: 1-800-767-0119 | Fax: (360) 833-1914 | Office Hours: M-F …

DOD Data Strategy - U.S. Department of Defense
4 Essential Capabilities necessary to enable all goals: 1.) Architecture – DoD architecture, enabled by enterprise cloud and other technologies, must allow pivoting on data more rapidly …

Curriculum Guidelines for Undergraduate Programs in …
Data Science is experiencing rapid and unplanned growth, spurred by the proliferation of complex and rich data in science, industry and government. Fueled in part by reports such as the …

AI4CI4AI and CI4AI - ICICLE: Intelligent CI with Computational …
2 Vision A national infrastructure that enables AI at the flick of a switch, ICICLE will: • Democratize AI through integrated plug-and-play AI. • Catalyze foundational AI/CI and transforming …

OFFICE OF THE VICE PROVOST FOR RESEARCH
b. Cyberinfrastructure & Data Science (CI-DS): Consisted of two co-chairs, nine members, and eight major stakeholders. Members had twenty-five scheduled meeCngs between October …

TABLE OF CONTENTS - CID, Inc
CID Bio-Science 1554 NE 3rd Ave Camas, WA 98607, USA Phone: +1 (360) 833 -8835 Fax: +1 (360) 833 -1914 sales@cid inc.com www.cid inc.com 1 Introduction The CI-340 Hand-held …

CDE Science Tuesday: Grades K –2 - California Department …
DATA. Helpful Hint: Start Early! And Provide Data Sets . DATA is another area where teachers need support. Make sure that if your performance expectations or lesson deal with longitudinal …

Data Science for Political Science - Rutgers University
Data Science for Political Science Syllabus 01:790:391 Mondays/Thursdays 9:15-10:35AM Hickman 122 Instructor: Dr. Katherine McCabe Email: k.mccabe@rutgers.edu Office: Hickman …

CID Bio-Science - Ekotechnika
Nov 19, 2014 · This cable is used to connect the CI-600 to the computer running the CI-600 software. 1 Collapsible Slider Rod This is used to lower, raise and hold the CI-600 in the root …

FIVE-YEAR SCIENCE PLAN - DesignSafe-CI
NHERI SCIENCE PLAN 2020 6 The Science Plan Task Group guided the development of the first . five-year NHERI Science Plan, which was first released in July of 2017. The plan was …

Government Certificate Course on DATA SCIENCE - IDEMI
Course Content: Introducon To Data Science, Basics of Python Programming for Data Manipulaon, Data Visualizaon Techniques, Stascal Analysis Methods Who can aend: Data …

Defining the Scholarly Record for Computational Research
Supporting best practices in science—CI in support of science should embed and encourage best practices in scientific research and discovery. 3. Taking a holistic approach to CI—the …

2023 07 11 CI Science - PhD Thesis Defense - ResearchGate
Jul 17, 2023 · § The CI Community, the CI Fellows, and the SCIP CEOs in particular. § Jonathan Calof, Craig Fleisher, Andrew Beurschgens, and Ben Gilad, the ultimate sceptical analyst, …

CI-340 Handheld Photosynthesis System
The CI-340 Handheld Photosynthesis System is a much improved version of the first lightweight, hand-held photosynthesis system introduced by CID in 1997. The latest version, the CI-340, …