Advertisement
data science with economics degree: Getting Started with Data Science Murtaza Haider, 2015-12-14 Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy! Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now. Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories. Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing. You’ll master data science by answering fascinating questions, such as: • Are religious individuals more or less likely to have extramarital affairs? • Do attractive professors get better teaching evaluations? • Does the higher price of cigarettes deter smoking? • What determines housing prices more: lot size or the number of bedrooms? • How do teenagers and older people differ in the way they use social media? • Who is more likely to use online dating services? • Why do some purchase iPhones and others Blackberry devices? • Does the presence of children influence a family’s spending on alcohol? For each problem, you’ll walk through defining your question and the answers you’ll need; exploring how others have approached similar challenges; selecting your data and methods; generating your statistics; organizing your report; and telling your story. Throughout, the focus is squarely on what matters most: transforming data into insights that are clear, accurate, and can be acted upon. |
data science with economics degree: Data Science for Economics and Finance Sergio Consoli, Diego Reforgiato Recupero, Michaela Saisana, 2021 This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications. |
data science with economics degree: Machine Learning and Data Science Blueprints for Finance Hariom Tatsat, Sahil Puri, Brad Lookabaugh, 2020-10-01 Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You’ll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You’ll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations |
data science with economics degree: Quantitative Economics with R Vikram Dayal, 2020-02-03 This book provides a contemporary treatment of quantitative economics, with a focus on data science. The book introduces the reader to R and RStudio, and uses expert Hadley Wickham’s tidyverse package for different parts of the data analysis workflow. After a gentle introduction to R code, the reader’s R skills are gradually honed, with the help of “your turn” exercises. At the heart of data science is data, and the book equips the reader to import and wrangle data, (including network data). Very early on, the reader will begin using the popular ggplot2 package for visualizing data, even making basic maps. The use of R in understanding functions, simulating difference equations, and carrying out matrix operations is also covered. The book uses Monte Carlo simulation to understand probability and statistical inference, and the bootstrap is introduced. Causal inference is illuminated using simulation, data graphs, and R code for applications with real economic examples, covering experiments, matching, regression discontinuity, difference-in-difference, and instrumental variables. The interplay of growth related data and models is presented, before the book introduces the reader to time series data analysis with graphs, simulation, and examples. Lastly, two computationally intensive methods—generalized additive models and random forests (an important and versatile machine learning method)—are introduced intuitively with applications. The book will be of great interest to economists—students, teachers, and researchers alike—who want to learn R. It will help economics students gain an intuitive appreciation of applied economics and enjoy engaging with the material actively, while also equipping them with key data science skills. |
data science with economics degree: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field. |
data science with economics degree: Big Data Science in Finance Irene Aldridge, Marco Avellaneda, 2021-01-08 Explains the mathematics, theory, and methods of Big Data as applied to finance and investing Data science has fundamentally changed Wall Street—applied mathematics and software code are increasingly driving finance and investment-decision tools. Big Data Science in Finance examines the mathematics, theory, and practical use of the revolutionary techniques that are transforming the industry. Designed for mathematically-advanced students and discerning financial practitioners alike, this energizing book presents new, cutting-edge content based on world-class research taught in the leading Financial Mathematics and Engineering programs in the world. Marco Avellaneda, a leader in quantitative finance, and quantitative methodology author Irene Aldridge help readers harness the power of Big Data. Comprehensive in scope, this book offers in-depth instruction on how to separate signal from noise, how to deal with missing data values, and how to utilize Big Data techniques in decision-making. Key topics include data clustering, data storage optimization, Big Data dynamics, Monte Carlo methods and their applications in Big Data analysis, and more. This valuable book: Provides a complete account of Big Data that includes proofs, step-by-step applications, and code samples Explains the difference between Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) Covers vital topics in the field in a clear, straightforward manner Compares, contrasts, and discusses Big Data and Small Data Includes Cornell University-tested educational materials such as lesson plans, end-of-chapter questions, and downloadable lecture slides Big Data Science in Finance: Mathematics and Applications is an important, up-to-date resource for students in economics, econometrics, finance, applied mathematics, industrial engineering, and business courses, and for investment managers, quantitative traders, risk and portfolio managers, and other financial practitioners. |
data science with economics degree: Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions Matt Taddy, 2019-08-23 Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling Understand how use ML tools in real world business problems, where causation matters more that correlation Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science. |
data science with economics degree: Python for Finance Yves J. Hilpisch, 2018-12-05 The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks. |
data science with economics degree: Reinventing Capitalism in the Age of Big Data Viktor Mayer-Schönberger, Thomas Ramge, 2018-02-27 From the New York Times bestselling author of Big Data, a prediction for how data will revolutionize the market economy and make cash, banks, and big companies obsolete In modern history, the story of capitalism has been a story of firms and financiers. That's all going to change thanks to the Big Data revolution. As Viktor Mayer-Schörger, bestselling author of Big Data, and Thomas Ramge, who writes for The Economist, show, data is replacing money as the driver of market behavior. Big finance and big companies will be replaced by small groups and individual actors who make markets instead of making things: think Uber instead of Ford, or Airbnb instead of Hyatt. This is the dawn of the era of data capitalism. Will it be an age of prosperity or of calamity? This book provides the indispensable roadmap for securing a better future. |
data science with economics degree: The Art of Data Science Roger D. Peng, Elizabeth Matsui, 2016-06-08 This book describes the process of analyzing data. The authors have extensive experience both managing data analysts and conducting their own data analyses, and this book is a distillation of their experience in a format that is applicable to both practitioners and managers in data science.--Leanpub.com. |
data science with economics degree: Coding the Matrix Philip N. Klein, 2013-07 An engaging introduction to vectors and matrices and the algorithms that operate on them, intended for the student who knows how to program. Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by doing, writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant xkcd comics. Chapters: The Function, The Field, The Vector, The Vector Space, The Matrix, The Basis, Dimension, Gaussian Elimination, The Inner Product, Special Bases, The Singular Value Decomposition, The Eigenvector, The Linear Program A new edition of this text, incorporating corrections and an expanded index, has been issued as of September 4, 2013, and will soon be available on Amazon. |
data science with economics degree: Econometrics Fumio Hayashi, 2011-12-12 The most authoritative and comprehensive synthesis of modern econometrics available Econometrics provides first-year graduate students with a thoroughly modern introduction to the subject, covering all the standard material necessary for understanding the principal techniques of econometrics, from ordinary least squares through cointegration. The book is distinctive in developing both time-series and cross-section analysis fully, giving readers a unified framework for understanding and integrating results. Econometrics covers all the important topics in a succinct manner. All the estimation techniques that could possibly be taught in a first-year graduate course, except maximum likelihood, are treated as special cases of GMM (generalized methods of moments). Maximum likelihood estimators for a variety of models, such as probit and tobit, are collected in a separate chapter. This arrangement enables students to learn various estimation techniques in an efficient way. Virtually all the chapters include empirical applications drawn from labor economics, industrial organization, domestic and international finance, and macroeconomics. These empirical exercises provide students with hands-on experience applying the techniques covered. The exposition is rigorous yet accessible, requiring a working knowledge of very basic linear algebra and probability theory. All the results are stated as propositions so that students can see the points of the discussion and also the conditions under which those results hold. Most propositions are proved in the text. For students who intend to write a thesis on applied topics, the empirical applications in Econometrics are an excellent way to learn how to conduct empirical research. For theoretically inclined students, the no-compromise treatment of basic techniques is an ideal preparation for more advanced theory courses. |
data science with economics degree: The Economics of Artificial Intelligence Ajay Agrawal, Joshua Gans, Avi Goldfarb, Catherine Tucker, 2024-03-05 A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system. |
data science with economics degree: Using R for Introductory Econometrics Florian Heiss, 2020-05-24 Introduces the popular, powerful and free programming language and software package R Focus implementation of standard tools and methods used in econometrics Compatible with Introductory Econometrics by Jeffrey M. Wooldridge in terms of topics, organization, terminology and notation Companion website with full text, all code for download and other goodies: http: //urfie.net Also check out Using Python for Introductory Econometrics http: //upfie.net/ Praise A very nice resource for those wanting to use R in their introductory econometrics courses. (Jeffrey M. Wooldridge) Using R for Introductory Econometrics is a fabulous modern resource. I know I'm going to be using it with my students, and I recommend it to anyone who wants to learn about econometrics and R at the same time. (David E. Giles in his blog Econometrics Beat) Topics: A gentle introduction to R Simple and multiple regression in matrix form and using black box routines Inference in small samples and asymptotics Monte Carlo simulations Heteroscedasticity Time series regression Pooled cross-sections and panel data Instrumental variables and two-stage least squares Simultaneous equation models Limited dependent variables: binary, count data, censoring, truncation, and sample selection Formatted reports and research papers combining R with R Markdown or LaTeX |
data science with economics degree: Analytical Political Economy Roberto Veneziani, Luca Zamparelli, 2018-06-11 Offering a unique picture of recent developments in a range of non-conventional theoretical approaches in economics, this book introduces readers to the study of Analytical Political Economy and the changes within the subject. Includes a wide range of topics and theoretical approaches that are critically and thoroughly reviewed Contributions within the book are written according to the highest standards of rigor and clarity that characterize academic work Provides comprehensive and well-organized surveys of cutting-edge empirical and theoretical work covering an exceptionally wide range of areas and fields Topics include macroeconomic theories of growth and distribution; agent-based and stock-flow consistent models; financialization and Marxian price and value theory Investigates exploitation theory; trade theory; the role of expectations and ‘animal spirits’ on macroeconomic performance as well as empirical research in Marxian economics |
data science with economics degree: Data Science for Mathematicians Nathan Carter, 2020-09-15 Mathematicians have skills that, if deepened in the right ways, would enable them to use data to answer questions important to them and others, and report those answers in compelling ways. Data science combines parts of mathematics, statistics, computer science. Gaining such power and the ability to teach has reinvigorated the careers of mathematicians. This handbook will assist mathematicians to better understand the opportunities presented by data science. As it applies to the curriculum, research, and career opportunities, data science is a fast-growing field. Contributors from both academics and industry present their views on these opportunities and how to advantage them. |
data science with economics degree: Econometrics and Data Science Tshepo Chris Nokeri, 2021-10-27 Get up to speed on the application of machine learning approaches in macroeconomic research. This book brings together economics and data science. Author Tshepo Chris Nokeri begins by introducing you to covariance analysis, correlation analysis, cross-validation, hyperparameter optimization, regression analysis, and residual analysis. In addition, he presents an approach to contend with multi-collinearity. He then debunks a time series model recognized as the additive model. He reveals a technique for binarizing an economic feature to perform classification analysis using logistic regression. He brings in the Hidden Markov Model, used to discover hidden patterns and growth in the world economy. The author demonstrates unsupervised machine learning techniques such as principal component analysis and cluster analysis. Key deep learning concepts and ways of structuring artificial neural networks are explored along with training them and assessing their performance. The Monte Carlo simulation technique is applied to stimulate the purchasing power of money in an economy. Lastly, the Structural Equation Model (SEM) is considered to integrate correlation analysis, factor analysis, multivariate analysis, causal analysis, and path analysis. After reading this book, you should be able to recognize the connection between econometrics and data science. You will know how to apply a machine learning approach to modeling complex economic problems and others beyond this book. You will know how to circumvent and enhance model performance, together with the practical implications of a machine learning approach in econometrics, and you will be able to deal with pressing economic problems. What You Will Learn Examine complex, multivariate, linear-causal structures through the path and structural analysis technique, including non-linearity and hidden states Be familiar with practical applications of machine learning and deep learning in econometrics Understand theoretical framework and hypothesis development, and techniques for selecting appropriate models Develop, test, validate, and improve key supervised (i.e., regression and classification) and unsupervised (i.e., dimension reduction and cluster analysis) machine learning models, alongside neural networks, Markov, and SEM models Represent and interpret data and models Who This Book Is For Beginning and intermediate data scientists, economists, machine learning engineers, statisticians, and business executives |
data science with economics degree: Capitalism without Capital Jonathan Haskel, Stian Westlake, 2018-10-16 Early in the twenty-first century, a quiet revolution occurred. For the first time, the major developed economies began to invest more in intangible assets, like design, branding, and software, than in tangible assets, like machinery, buildings, and computers. For all sorts of businesses, the ability to deploy assets that one can neither see nor touch is increasingly the main source of long-term success. But this is not just a familiar story of the so-called new economy. Capitalism without Capital shows that the growing importance of intangible assets has also played a role in some of the larger economic changes of the past decade, including the growth in economic inequality and the stagnation of productivity. Jonathan Haskel and Stian Westlake explore the unusual economic characteristics of intangible investment and discuss how an economy rich in intangibles is fundamentally different from one based on tangibles. Capitalism without Capital concludes by outlining how managers, investors, and policymakers can exploit the characteristics of an intangible age to grow their businesses, portfolios, and economies. |
data science with economics degree: Statistics for Data Science James D. Miller, 2017-11-17 Get your statistics basics right before diving into the world of data science About This Book No need to take a degree in statistics, read this book and get a strong statistics base for data science and real-world programs; Implement statistics in data science tasks such as data cleaning, mining, and analysis Learn all about probability, statistics, numerical computations, and more with the help of R programs Who This Book Is For This book is intended for those developers who are willing to enter the field of data science and are looking for concise information of statistics with the help of insightful programs and simple explanation. Some basic hands on R will be useful. What You Will Learn Analyze the transition from a data developer to a data scientist mindset Get acquainted with the R programs and the logic used for statistical computations Understand mathematical concepts such as variance, standard deviation, probability, matrix calculations, and more Learn to implement statistics in data science tasks such as data cleaning, mining, and analysis Learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks Get comfortable with performing various statistical computations for data science programmatically In Detail Data science is an ever-evolving field, which is growing in popularity at an exponential rate. Data science includes techniques and theories extracted from the fields of statistics; computer science, and, most importantly, machine learning, databases, data visualization, and so on. This book takes you through an entire journey of statistics, from knowing very little to becoming comfortable in using various statistical methods for data science tasks. It starts off with simple statistics and then move on to statistical methods that are used in data science algorithms. The R programs for statistical computation are clearly explained along with logic. You will come across various mathematical concepts, such as variance, standard deviation, probability, matrix calculations, and more. You will learn only what is required to implement statistics in data science tasks such as data cleaning, mining, and analysis. You will learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks. By the end of the book, you will be comfortable with performing various statistical computations for data science programmatically. Style and approach Step by step comprehensive guide with real world examples |
data science with economics degree: A First Course in Machine Learning Simon Rogers, Mark Girolami, 2016-10-14 Introduces the main algorithms and ideas that underpin machine learning techniques and applications Keeps mathematical prerequisites to a minimum, providing mathematical explanations in comment boxes and highlighting important equations Covers modern machine learning research and techniques Includes three new chapters on Markov Chain Monte Carlo techniques, Classification and Regression with Gaussian Processes, and Dirichlet Process models Offers Python, R, and MATLAB code on accompanying website: http://www.dcs.gla.ac.uk/~srogers/firstcourseml/ |
data science with economics degree: Introductory Econometrics: A Modern Approach Jeffrey M. Wooldridge, 2019-01-04 Gain an understanding of how econometrics can answer today's questions in business, policy evaluation and forecasting with Wooldridge's INTRODUCTORY ECONOMETRICS: A MODERN APPROACH, 7E. This edition's practical, yet professional, approach demonstrates how econometrics has moved beyond a set of abstract tools to become genuinely useful for answering questions across a variety of disciplines. Information is organized around the type of data being analyzed, using a systematic approach that only introduces assumptions as they are needed. This makes the material easier to understand and, ultimately, leads to better econometric practices. Packed with relevant applications, this edition incorporates more than 100 intriguing data sets in different formats. Updates introduce the latest developments in the field, including recent advances in the so-called “causal effects” or “treatment effects” literature, for an understanding of the impact and importance of econometrics today. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version. |
data science with economics degree: Economics for Mathematicians John William Scott Cassels, 1981-12-10 This is the expanded notes of a course intended to introduce students specializing in mathematics to some of the central ideas of traditional economics. The book should be readily accessible to anyone with some training in university mathematics; more advanced mathematical tools are explained in the appendices. Thus this text could be used for undergraduate mathematics courses or as supplementary reading for students of mathematical economics. |
data science with economics degree: On Being a Data Skeptic Cathy O'Neil, 2013-09-30 Data is here, it's growing, and it's powerful. Author Cathy O'Neil argues that the right approach to data is skeptical, not cynical––it understands that, while powerful, data science tools often fail. Data is nuanced, and a really excellent skeptic puts the term 'science' into 'data science.' The big data revolution shouldn't be dismissed as hype, but current data science tools and models shouldn't be hailed as the end-all-be-all, either. |
data science with economics degree: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-10-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field. |
data science with economics degree: Law and Policy for the Quantum Age Chris Jay Hoofnagle, Simson L. Garfinkel, 2022-01-06 The Quantum Age cuts through the hype to demystify quantum technologies, their development paths, and the policy issues they raise. |
data science with economics degree: Kennedy and Roosevelt Michael Beschloss, 2016-08-16 The revealing story of Franklin Roosevelt, Joe Kennedy, and a political alliance that changed history, from a New York Times–bestselling author. When Franklin Roosevelt ran for president in 1932, he gained the support of Joseph Kennedy, a little-known businessman with Wall Street connections. Instrumental in Roosevelt’s victory, their partnership began a longstanding alliance between two of America’s most ambitious power brokers. Kennedy worked closely with FDR as the first chairman of the Securities and Exchange Commission, and later as ambassador to Great Britain. But at the outbreak of World War II, sensing a threat to his family and fortune, Kennedy lobbied against American intervention—putting him in direct conflict with Roosevelt’s intentions. Though he retreated from the spotlight to focus on the political careers of his sons, Kennedy’s relationship with Roosevelt would eventually come full circle in 1960, when Franklin Roosevelt Jr. campaigned for John F. Kennedy’s presidential win. With unprecedented access to Kennedy’s private diaries as well as firsthand interviews with Roosevelt’s family and White House aides, New York Times–bestselling author Michael Beschloss—called “the nation’s leading presidential historian” by Newsweek—presents an insightful study in contrasts. Roosevelt, the scion of a political dynasty, had a genius for the machinery of government; Kennedy, who built his own fortune, was a political outsider determined to build a dynasty of his own. From the author of The Conquerors and Presidential Courage, this is a “fascinating account of the complex, ambiguous relationship of two shrewd, ruthless, power-hungry men” (The New York Times Book Review). |
data science with economics degree: Internet Economics Lee W. McKnight, Joseph P. Bailey, 1998 The Internet has rapidly become an important element of the economic system. The lack of accepted metrics for economic analysis of Internet transactions is therefore increasingly problematic. This book, one of the first to bring together research on Internet engineering and economics, attempts to establish such metrics. The chapters, which developed out of a 1995 workshop held at MIT, include architectural models and analyses of Internet usage, as well as alternative pricing policies. The book is organized into six sections: 1) Introduction to Internet Economics, 2) The Economics of the Internet, 3) Interconnection and Multicast Economics, 4) Usage Sensitive Pricing, 5) Internet Commerce, and 6) Internet Economics and Policy. Contributors Loretta Anania, Joseph P. Bailey, Nevil Brownlee, David Carver, David Clark, David W. Crawford, Ketil Danielsen, Deborah Estrin, Branko Gerovac, David Gingold, Jiong Gong, Alok Gupta, Shai Herzog, Clark Johnson, Martyne M. Hallgren, Frank P. Kelly, Charlie Lai, Alan K. McAdams, Jeffrey K. MacKie-Mason, Lee W. McKnight, Gennady Medvinsky, Liam Murphy, John Murphy, B. Clifford Neuman, Jon M. Peha, Joseph Reagle, Mitrabarun Sarkar, Scott Shenker, Marvin A. Sirbu, Richard Jay Solomon, Padmanabhan Srinagesh, Dale O. Stahl, Hal R. Varian, Qiong Wang, Martin Weiss, Andrew B. Whinston |
data science with economics degree: 97 Things About Ethics Everyone in Data Science Should Know Bill Franks, 2020-08-06 Most of the high-profile cases of real or perceived unethical activity in data science arenâ??t matters of bad intent. Rather, they occur because the ethics simply arenâ??t thought through well enough. Being ethical takes constant diligence, and in many situations identifying the right choice can be difficult. In this in-depth book, contributors from top companies in technology, finance, and other industries share experiences and lessons learned from collecting, managing, and analyzing data ethically. Data science professionals, managers, and tech leaders will gain a better understanding of ethics through powerful, real-world best practices. Articles include: Ethics Is Not a Binary Conceptâ??Tim Wilson How to Approach Ethical Transparencyâ??Rado Kotorov Unbiased ≠ Fairâ??Doug Hague Rules and Rationalityâ??Christof Wolf Brenner The Truth About AI Biasâ??Cassie Kozyrkov Cautionary Ethics Talesâ??Sherrill Hayes Fairness in the Age of Algorithmsâ??Anna Jacobson The Ethical Data Storytellerâ??Brent Dykes Introducing Ethicizeâ?¢, the Fully AI-Driven Cloud-Based Ethics Solution!â??Brian Oâ??Neill Be Careful with Decisions of the Heartâ??Hugh Watson Understanding Passive Versus Proactive Ethicsâ??Bill Schmarzo |
data science with economics degree: Future Rising Andrew Maynard, 2020-10-27 A scientist offers compelling visions and potential pitfalls of the future—in “a journey through time, space, and the human experience” (Dr. Tanya Harrison, coauthor of For All Humankind). Humanity has gained the ability not only to imagine the future, but to design and engineer it. At times entertaining, and at others profound, Future Rising provides an original perspective on our relationship with the future. As a species, we’ve become talented architects of our future—yet we often struggle to come to terms with what this means. As innovation and rapidly shifting norms and expectations drive our world at breakneck speed, we sometimes need to find a still, quiet place to pause and think. Future Rising creates such a place, where we can take advantage of our species’ knowledge of world history and the importance of science to piece together a positive future. To create a good future, we must rediscover the past. Our relationship with the future is inextricably intertwined with where we’ve come from, who we are, and what we aspire to. Future Rising starts at the beginning of all things with the Big Bang and traces a pathway along the emergence of intelligent life, through what makes humans uniquely capable of imagining and creating different futures. In a series of sixty short reflections, Andrew Maynard, a former physicist and nationally recognized expert in technology and society, will take you on a journey into: What “the future” actually is How it molds and guides our lives How we can use the history of the world to change our future “A thoughtful and thought-provoking response to the moment we’re in, chronicling how we got here, where we’re going, and what role we have in that journey.” —Ramona Pringle, Director of Creative Innovation Studio and Associate Professor, Ryerson University |
data science with economics degree: The Measure of a Nation Howard Steven Friedman, 2012 Compares the United States with other affluent democracies in such areas as health, crime and violence, education, democracy, and equality, and suggests ways the country might improve its standing in these areas. |
data science with economics degree: The Quants Scott Patterson, 2011-01-25 With the immediacy of today’s NASDAQ close and the timeless power of a Greek tragedy, The Quants is at once a masterpiece of explanatory journalism, a gripping tale of ambition and hubris, and an ominous warning about Wall Street’s future. In March of 2006, four of the world’s richest men sipped champagne in an opulent New York hotel. They were preparing to compete in a poker tournament with million-dollar stakes, but those numbers meant nothing to them. They were accustomed to risking billions. On that night, these four men and their cohorts were the new kings of Wall Street. Muller, Griffin, Asness, and Weinstein were among the best and brightest of a new breed, the quants. Over the prior twenty years, this species of math whiz--technocrats who make billions not with gut calls or fundamental analysis but with formulas and high-speed computers--had usurped the testosterone-fueled, kill-or-be-killed risk-takers who’d long been the alpha males the world’s largest casino. The quants helped create a digitized money-trading machine that could shift billions around the globe with the click of a mouse. Few realized, though, that in creating this unprecedented machine, men like Muller, Griffin, Asness and Weinstein had sowed the seeds for history’s greatest financial disaster. Drawing on unprecedented access to these four number-crunching titans, The Quants tells the inside story of what they thought and felt in the days and weeks when they helplessly watched much of their net worth vaporize--and wondered just how their mind-bending formulas and genius-level IQ’s had led them so wrong, so fast. |
data science with economics degree: Python Machine Learning Sebastian Raschka, 2015-09-23 Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models. |
data science with economics degree: Decision Behaviour, Analysis and Support Simon French, John Maule, Nadia Papamichail, 2009-07-30 A multi-disciplinary exploration of how we can help decision makers to deliberate and make better decisions. |
data science with economics degree: Differential Equations and Numerical Analysis Valarmathi Sigamani, John J. H. Miller, Ramanujam Narasimhan, Paramasivam Mathiazhagan, Franklin Victor, 2016-08-18 This book offers an ideal introduction to singular perturbation problems, and a valuable guide for researchers in the field of differential equations. It also includes chapters on new contributions to both fields: differential equations and singular perturbation problems. Written by experts who are active researchers in the related fields, the book serves as a comprehensive source of information on the underlying ideas in the construction of numerical methods to address different classes of problems with solutions of different behaviors, which will ultimately help researchers to design and assess numerical methods for solving new problems. All the chapters presented in the volume are complemented by illustrations in the form of tables and graphs. |
data science with economics degree: Data Science for Financial Econometrics Nguyen Ngoc Thach, Vladik Kreinovich, Nguyen Duc Trung, 2020-11-13 This book offers an overview of state-of-the-art econometric techniques, with a special emphasis on financial econometrics. There is a major need for such techniques, since the traditional way of designing mathematical models – based on researchers’ insights – can no longer keep pace with the ever-increasing data flow. To catch up, many application areas have begun relying on data science, i.e., on techniques for extracting models from data, such as data mining, machine learning, and innovative statistics. In terms of capitalizing on data science, many application areas are way ahead of economics. To close this gap, the book provides examples of how data science techniques can be used in economics. Corresponding techniques range from almost traditional statistics to promising novel ideas such as quantum econometrics. Given its scope, the book will appeal to students and researchers interested in state-of-the-art developments, and to practitioners interested in using data science techniques. |
data science with economics degree: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates |
data science with economics degree: The Economics and Implications of Data Mr.Yan Carriere-Swallow, Mr.Vikram Haksar, 2019-09-23 This SPR Departmental Paper will provide policymakers with a framework for studying changes to national data policy frameworks. |
data science with economics degree: Numsense! Data Science for the Layman Annalyn Ng, 2017-03-24 Used in Stanford's CS102 Big Data (Spring 2017) course. Want to get started on data science? Our promise: no math added. This book has been written in layman's terms as a gentle introduction to data science and its algorithms. Each algorithm has its own dedicated chapter that explains how it works, and shows an example of a real-world application. To help you grasp key concepts, we stick to intuitive explanations, as well as lots of visuals, all of which are colorblind-friendly. Popular concepts covered include: A/B Testing Anomaly Detection Association Rules Clustering Decision Trees and Random Forests Regression Analysis Social Network Analysis Neural Networks Features: Intuitive explanations and visuals Real-world applications to illustrate each algorithm Point summaries at the end of each chapter Reference sheets comparing the pros and cons of algorithms Glossary list of commonly-used terms With this book, we hope to give you a practical understanding of data science, so that you, too, can leverage its strengths in making better decisions. |
data science with economics degree: An Economist in the Real World Kaushik Basu, 2016-02-11 Appointed as the chief economic adviser (CEA) to the Government of India in 2009, Basu—a theorist, with special interest in development economics, and a professor of economics at Cornell University—discovered the complexity of applying economic models to the real world. Effective policymaking, Basu learned, integrates technical knowledge with political awareness. In this book, he describes the art of economic policymaking, viewed through the lens of his two and a half years as CEA. |
data science with economics degree: Fundamentals of Microeconomics Cecilia Danton, 2021-11-16 The branch of economics which deals with the behavior of individual firms as well as consumers in decision-making and allocation of resources is known as microeconomics. Various mathematical tools such as exponential functions, derivatives and statistics are used in microeconomics. The key focus of this field is on analyzing the market mechanisms which establish the relative prices among goods and services and allocate limited resources. Some common theories in microeconomics are the consumer demand theory, production theory, opportunity cost, price theory and cost-of-production theory of value. The topics included in this book on microeconomics are of utmost significance and bound to provide incredible insights to readers. It is compiled in such a manner, that it will provide in-depth knowledge about the theory and practice of microeconomics. This book will serve as a valuable source of reference for those interested in this field. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …