Advertisement
data science for supply chain forecast: Data Science for Supply Chain Forecasting Nicolas Vandeput, 2021 Open source statistical toolkits have progressed tremendously over the last decade. In this book Nicolas Vandeput demonstrates that these toolkits are more than enough to address real-world forecasting challenges as found in supply chains. Using data science in order to solve a problem requires a scientific mindset more than coding skills. Data Science for Supply Chain Forecasting contends that a true scientific method that includes experimentation, observation and constant questioning must be applied to supply chain as well. The first part of the book is focused on statistical traditional models and the second on machine learning. The various chapters are focused either on forecast models or on new concepts (overfit, underfit, kpi, outliers). The book is full of python examples to show the reader how to apply these models him/herself. This is a book for practitioners focusing on data science and machine learning and demonstrates how both are closely interlinked in order to create an advanced forecast for supply chain. Through its hands-on approach, it is accessible to a large audience of supply chain practitioners. |
data science for supply chain forecast: Data Science for Supply Chain Forecast Nicolas Vandeput, 2018-11-12 Data Science for Supply Chain Forecast Data Science for Supply Chain Forecast is a book for practitioners focusing on data science and machine learning; it demonstrates how both are closely interlinked in order to create an advanced forecast for supply chain. As one will discover in this book, artificial intelligence (AI) & machine learning (ML) are not simply a question of coding skills. Using data science in order to solve a problem requires a scientific mindset more than coding skills. The story behind these models is one of experimentation, of observation and of constant questioning; a true scientific method must be applied to supply chain. In the data science field as well as that of the supply chain, simple questions do not come with simple answers. In order to resolve these questions, one needs to be both a scientist as well as to use the correct tools. In this book, we will discuss both. Is this Book for me? This book has been written for supply chain practitioners, forecasters and analysts who are looking to go the extra mile. You do not need technical IT skills to start using the models of this book. You do not need a dedicated server or expensive software licenses: you solely need your own computer. You do not need a PhD in mathematics: mathematics will only be utilized as a tool to tweak and understand the models. In the majority of the cases - especially when it comes to machine learning - a deep understanding of the mathematical inner workings of a model will not be necessary in order to optimize it and understand its limitations. Reviews In an age where analytics and machine learning are taking on larger roles in the business forecasting, Nicolas' book is perfect solution for professionals who need to combine practical supply chain experience with the mathematical and technological tools that can help us predict the future more reliably. Daniel Stanton - Author, Supply Chain Management For Dummies Open source statistical toolkits have progressed tremendously over the last decade. Nicolas demonstrates that these toolkits are more than enough to start addressing real-world forecasting challenges as found in supply chains. Moreover, through its hands-on approach, this book is accessible to a large audience of supply chain practitioners. The supply chain of the 21st century will be data-driven and Nicolas gets it perfectly. Joannes Vermorel - CEO Lokad This book is unique in its kind. It explains the basics of Python using basic traditional forecasting techniques and shows how machine learning is revolutionizing the forecasting domain. Nicolas has done an outstanding job explaining a technical subject in an easily accessible way. A must-read for any supply chain professional. Professor Bram Desmet - CEO Solventure This book is before anything a practical and business-oriented DIY user manual to help planners move into 21st-century demand planning. The breakthrough comes from several tools and techniques available to all, and which thanks to Nicolas' precise and concrete explanations can now be implemented in real business environments by any normal planner. I can confirm that Nicolas' learnings are based on real-life experience and can tremendously help on improving top and bottom lines. Henri-Xavier Benoist - VP Supply Chain Bridegstone EMEA |
data science for supply chain forecast: Inventory Optimization Nicolas Vandeput, 2020-08-24 In this book . . . Nicolas Vandeput hacks his way through the maze of quantitative supply chain optimizations. This book illustrates how the quantitative optimization of 21st century supply chains should be crafted and executed. . . . Vandeput is at the forefront of a new and better way of doing supply chains, and thanks to a richly illustrated book, where every single situation gets its own illustrating code snippet, so could you. --Joannes Vermorel, CEO, Lokad Inventory Optimization argues that mathematical inventory models can only take us so far with supply chain management. In order to optimize inventory policies, we have to use probabilistic simulations. The book explains how to implement these models and simulations step-by-step, starting from simple deterministic ones to complex multi-echelon optimization. The first two parts of the book discuss classical mathematical models, their limitations and assumptions, and a quick but effective introduction to Python is provided. Part 3 contains more advanced models that will allow you to optimize your profits, estimate your lost sales and use advanced demand distributions. It also provides an explanation of how you can optimize a multi-echelon supply chain based on a simple—yet powerful—framework. Part 4 discusses inventory optimization thanks to simulations under custom discrete demand probability functions. Inventory managers, demand planners and academics interested in gaining cost-effective solutions will benefit from the do-it-yourself examples and Python programs included in each chapter. Events around the book Link to a De Gruyter Online Event in which the author Nicolas Vandeput together with Stefan de Kok, supply chain innovator and CEO of Wahupa; Koen Cobbaert, Director in the S&O Industry practice of PwC Belgium; Bram Desmet, professor of operations & supply chain at the Vlerick Business School in Ghent; and Karl-Eric Devaux, Planning Consultant, Hatmill, discuss about models for inventory optimization. The event will be moderated by Eric Wilson, Director of Thought Leadership for Institute of Business Forecasting (IBF): https://youtu.be/565fDQMJEEg |
data science for supply chain forecast: Big Data Driven Supply Chain Management Nada R. Sanders, 2014-05-07 Master a complete, five-step roadmap for leveraging Big Data and analytics to gain unprecedented competitive advantage from your supply chain. Using Big Data, pioneers such as Amazon, UPS, and Wal-Mart are gaining unprecedented mastery over their supply chains. They are achieving greater visibility into inventory levels, order fulfillment rates, material and product delivery… using predictive data analytics to match supply with demand; leveraging new planning strengths to optimize their sales channel strategies; optimizing supply chain strategy and competitive priorities; even launching powerful new ventures. Despite these opportunities, many supply chain operations are gaining limited or no value from Big Data. In Big Data Driven Supply Chain Management, Nada Sanders presents a systematic five-step framework for using Big Data in supply chains. You'll learn best practices for segmenting and analyzing customers, defining competitive priorities for each segment, aligning functions behind strategy, dissolving organizational boundaries to sense demand and make better decisions, and choose the right metrics to support all of this. Using these techniques, you can overcome the widespread obstacles to making the most of Big Data in your supply chain — and earn big profits from the data you're already generating. For all executives, managers, and analysts interested in using Big Data technologies to improve supply chain performance. |
data science for supply chain forecast: Demand Prediction in Retail Maxime C. Cohen, Paul-Emile Gras, Arthur Pentecoste, Renyu Zhang, 2022-01-01 From data collection to evaluation and visualization of prediction results, this book provides a comprehensive overview of the process of predicting demand for retailers. Each step is illustrated with the relevant code and implementation details to demystify how historical data can be leveraged to predict future demand. The tools and methods presented can be applied to most retail settings, both online and brick-and-mortar, such as fashion, electronics, groceries, and furniture. This book is intended to help students in business analytics and data scientists better master how to leverage data for predicting demand in retail applications. It can also be used as a guide for supply chain practitioners who are interested in predicting demand. It enables readers to understand how to leverage data to predict future demand, how to clean and pre-process the data to make it suitable for predictive analytics, what the common caveats are in terms of implementation and how to assess prediction accuracy. |
data science for supply chain forecast: Business Forecasting Michael Gilliland, Len Tashman, Udo Sglavo, 2021-05-11 Discover the role of machine learning and artificial intelligence in business forecasting from some of the brightest minds in the field In Business Forecasting: The Emerging Role of Artificial Intelligence and Machine Learning accomplished authors Michael Gilliland, Len Tashman, and Udo Sglavo deliver relevant and timely insights from some of the most important and influential authors in the field of forecasting. You'll learn about the role played by machine learning and AI in the forecasting process and discover brand-new research, case studies, and thoughtful discussions covering an array of practical topics. The book offers multiple perspectives on issues like monitoring forecast performance, forecasting process, communication and accountability for forecasts, and the use of big data in forecasting. You will find: Discussions on deep learning in forecasting, including current trends and challenges Explorations of neural network-based forecasting strategies A treatment of the future of artificial intelligence in business forecasting Analyses of forecasting methods, including modeling, selection, and monitoring In addition to the Foreword by renowned researchers Spyros Makridakis and Fotios Petropoulos, the book also includes 16 opinion/editorial Afterwords by a diverse range of top academics, consultants, vendors, and industry practitioners, each providing their own unique vision of the issues, current state, and future direction of business forecasting. Perfect for financial controllers, chief financial officers, business analysts, forecast analysts, and demand planners, Business Forecasting will also earn a place in the libraries of other executives and managers who seek a one-stop resource to help them critically assess and improve their own organization's forecasting efforts. |
data science for supply chain forecast: Predictive Analytics for Business Forecasting & Planning J. Eric Wilson, 2020-12 |
data science for supply chain forecast: Intermittent Demand Forecasting John E. Boylan, Aris A. Syntetos, 2021-06-02 INTERMITTENT DEMAND FORECASTING The first text to focus on the methods and approaches of intermittent, rather than fast, demand forecasting Intermittent Demand Forecasting is for anyone who is interested in improving forecasts of intermittent demand products, and enhancing the management of inventories. Whether you are a practitioner, at the sharp end of demand planning, a software designer, a student, an academic teaching operational research or operations management courses, or a researcher in this field, we hope that the book will inspire you to rethink demand forecasting. If you do so, then you can contribute towards significant economic and environmental benefits. No prior knowledge of intermittent demand forecasting or inventory management is assumed in this book. The key formulae are accompanied by worked examples to show how they can be implemented in practice. For those wishing to understand the theory in more depth, technical notes are provided at the end of each chapter, as well as an extensive and up-to-date collection of references for further study. Software developments are reviewed, to give an appreciation of the current state of the art in commercial and open source software. “Intermittent demand forecasting may seem like a specialized area but actually is at the center of sustainability efforts to consume less and to waste less. Boylan and Syntetos have done a superb job in showing how improvements in inventory management are pivotal in achieving this. Their book covers both the theory and practice of intermittent demand forecasting and my prediction is that it will fast become the bible of the field.” —Spyros Makridakis, Professor, University of Nicosia, and Director, Institute for the Future and the Makridakis Open Forecasting Center (MOFC). “We have been able to support our clients by adopting many of the ideas discussed in this excellent book, and implementing them in our software. I am sure that these ideas will be equally helpful for other supply chain software vendors and for companies wanting to update and upgrade their capabilities in forecasting and inventory management.” —Suresh Acharya, VP, Research and Development, Blue Yonder. “As product variants proliferate and the pace of business quickens, more and more items have intermittent demand. Boylan and Syntetos have long been leaders in extending forecasting and inventory methods to accommodate this new reality. Their book gathers and clarifies decades of research in this area, and explains how practitioners can exploit this knowledge to make their operations more efficient and effective.” —Thomas R. Willemain, Professor Emeritus, Rensselaer Polytechnic Institute. |
data science for supply chain forecast: Demand Forecasting and Order Planning in Supply Chains and Humanitarian Logistics Taghipour, Atour, 2020-09-18 In a decentralized supply chain, most of the supply chain agents may not share information due to confidentiality policies, quality of information, or different system incompatibilities. Every actor holds its own set of information and attempts to maximize its objective (minimizing costs/minimizing inventory holdings) based on the available settings. Therefore, the agents control their own activities with the objective of improving their own competitiveness, which leads them to make decisions that maximize their local performance by ignoring the other agents or even the final consumer. These decisions are myopic because they do not consider the performance of all the partners to satisfy the consumer. Demand Forecasting and Order Planning in Supply Chains and Humanitarian Logistics is a collection of innovative research that focuses on demand anticipation, forecasting, and order planning as well as humanitarian logistics to propose original solutions for existing problems. While highlighting topics including artificial intelligence, information sharing, and operations management, this book is ideally designed for supply chain managers, logistics personnel, business executives, management experts, operation industry professionals, academicians, researchers, and students who want to improve their understanding of supply chain coordination in order to be competitive in the new era of globalization. |
data science for supply chain forecast: Managing Operations Throughout Global Supply Chains Essila, Jean C., 2019-06-14 Globalization has made both operations and supply chains more complex than ever before. Inputs are sourced from many locations all over the world to serve different needs and market segments throughout the planet, making it a global challenge that necessitates a global strategic response. Managing Operations Throughout Global Supply Chains is a crucial academic resource that discusses concepts, methodologies, and applications of emerging techniques for operations and supply chain management processes that promote cost efficiency. While highlighting topics such as global operations, resource planning, and business forecasting, this publication explores how organizations manage the procurement of all necessary resources at every stage of the production cycle from the original source to the final consumers. This book is ideally designed for researchers, academicians, practitioners, professional organizations, policymakers, and government officials. |
data science for supply chain forecast: The Quantitative Supply Chain Joannès Vermorel, 2018-01-26 The Quantitative Supply Chain represents a novel and disruptive perspective on the optimization of supply chains. It can be seen as a refoundation of many supply chain practices, in particular regarding inventory forecasting, and has been built to make the most of the latest statistical approaches and vast computing resources that are available nowadays. |
data science for supply chain forecast: Supply Chain Management Strategies and Risk Assessment in Retail Environments Kumar, Akhilesh, Saurav, Swapnil, 2017-12-15 The proper understanding and managing of project risks and uncertainties is crucial to any organization. It is paramount that all phases of project development and execution are monitored to avoid poor project results from meager economics, overspending, and reputation. Supply Chain Management Strategies and Risk Assessment in Retail Environments is a comprehensive reference source for the latest scholarly material on effectively managing risk factors and implementing the latest supply management strategies in retail environments. Featuring coverage on relevant topics such as omni-channel retail, green supply chain, and customer loyalty, this book is geared toward academicians, researchers, and students seeking current research on the challenges and opportunities available in the realm of retail and the flow of materials, information, and finances between companies and consumers. |
data science for supply chain forecast: Managing Supply Chain Risk and Vulnerability Teresa Wu, Jennifer Vincent Blackhurst, 2009-08-20 Managing Supply Chain Risk and Vulnerability, a book that both practitioners and students can use to better understand and manage supply chain risk, presents topics on decision making related to supply chain risk. Leading academic researchers, as well as practitioners, have contributed chapters focusing on developing an overall understanding of risk and its relationship to supply chain performance; investigating the relationship between response time and disruption impact; assessing and prioritizing risks; and assessing supply chain resilience. Supply chain managers will find Managing Supply Chain Risk and Vulnerability a useful tool box for methods they can employ to better mitigate and manage supply chain risk. On the academic side, the book can be used to teach senior undergraduate students, as well as graduate-level students. Additionally, researchers may use the text as a reference in the area of supply chain risk and vulnerability. |
data science for supply chain forecast: Research Anthology on Big Data Analytics, Architectures, and Applications Information Resources Management Association, 2022 Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians. |
data science for supply chain forecast: Demand Forecasting for Managers Stephan Kolassa, Enno Siemsen, 2016-08-17 Most decisions and plans in a firm require a forecast. Not matching supply with demand can make or break any business, and that's why forecasting is so invaluable. Forecasting can appear as a frightening topic with many arcane equations to master. For this reason, the authors start out from the very basics and provide a non-technical overview of common forecasting techniques as well as organizational aspects of creating a robust forecasting process. The book also discusses how to measure forecast accuracy to hold people accountable and guide continuous improvement. This book does not require prior knowledge of higher mathematics, statistics, or operations research. It is designed to serve as a first introduction to the non-expert, such as a manager overseeing a forecasting group, or an MBA student who needs to be familiar with the broad outlines of forecasting without specializing in it. |
data science for supply chain forecast: Biologically Inspired Techniques in Many-Criteria Decision Making Satchidananda Dehuri, Bhabani Shankar Prasad Mishra, Pradeep Kumar Mallick, Sung-Bae Cho, Margarita N. Favorskaya, 2020-01-21 This book addresses many-criteria decision-making (MCDM), a process used to find a solution in an environment with several criteria. In many real-world problems, there are several different objectives that need to be taken into account. Solving these problems is a challenging task and requires careful consideration. In real applications, often simple and easy to understand methods are used; as a result, the solutions accepted by decision makers are not always optimal solutions. On the other hand, algorithms that would provide better outcomes are very time consuming. The greatest challenge facing researchers is how to create effective algorithms that will yield optimal solutions with low time complexity. Accordingly, many current research efforts are focused on the implementation of biologically inspired algorithms (BIAs), which are well suited to solving uni-objective problems. This book introduces readers to state-of-the-art developments in biologically inspired techniques and their applications, with a major emphasis on the MCDM process. To do so, it presents a wide range of contributions on e.g. BIAs, MCDM, nature-inspired algorithms, multi-criteria optimization, machine learning and soft computing. |
data science for supply chain forecast: Fundamentals of Demand Planning and Forecasting Chaman L. Jain, Jack Malehorn, 2012 |
data science for supply chain forecast: Demand-Driven Forecasting Charles W. Chase, 2009-07-23 Praise for Demand-Driven Forecasting A Structured Approach to Forecasting There are authors of advanced forecasting books who take an academic approach to explaining forecast modeling that focuses on the construction of arcane algorithms and mathematical proof that are not very useful for forecasting practitioners. Then, there are other authors who take a general approach to explaining demand planning, but gloss over technical content required of modern forecasters. Neither of these approaches is well-suited for helping business forecasters critically identify the best demand data sources, effectively apply appropriate statistical forecasting methods, and properly design efficient demand planning processes. In Demand-Driven Forecasting, Chase fills this void in the literature and provides the reader with concise explanations for advanced statistical methods and credible business advice for improving ways to predict demand for products and services. Whether you are an experienced professional forecasting manager, or a novice forecast analyst, you will find this book a valuable resource for your professional development. —Daniel Kiely, Senior Manager, Epidemiology, Forecasting & Analytics, Celgene Corporation Charlie Chase has given forecasters a clear, responsible approach for ending the timeless tug of war between the need for 'forecast rigor' and the call for greater inclusion of 'client judgment.' By advancing the use of 'domain knowledge' and hypothesis testing to enrich base-case forecasts, he has empowered professional forecasters to step up and impact their companies' business results favorably and profoundly, all the while enhancing the organizational stature of forecasters broadly. —Bob Woodard, Vice President, Global Consumer and Customer Insights, Campbell Soup Company |
data science for supply chain forecast: Supply Chain Management For Dummies Daniel Stanton, 2017-11-29 Everyone can impact the supply chain Supply Chain Management For Dummies helps you connect the dots between things like purchasing, logistics, and operations to see how the big picture is affected by seemingly isolated inefficiencies. Your business is a system, made of many moving parts that must synchronize to most efficiently meet the needs of your customers—and your shareholders. Interruptions in one area ripple throughout the entire operation, disrupting the careful coordination that makes businesses successful; that's where supply chain management (SCM) comes in. SCM means different things to different people, and many different models exist to meet the needs of different industries. This book focuses on the broadly-applicable Supply Chain Operations Reference (SCOR) Model: Plan, Source, Make, Deliver, Return, and Enable, to describe the basic techniques and key concepts that keep businesses running smoothly. Whether you're in sales, HR, or product development, the decisions you make every day can impact the supply chain. This book shows you how to factor broader impact into your decision making process based on your place in the system. Improve processes by determining your metrics Choose the right software and implement appropriate automation Evaluate and mitigate risks at all steps in the supply chain Help your business function as a system to more effectively meet customer needs We tend to think of the supply chain as suppliers, logistics, and warehousing—but it's so much more than that. Every single person in your organization, from the mailroom to the C-suite, can work to enhance or hinder the flow. Supply Chain Management For Dummies shows you what you need to know to make sure your impact leads to positive outcomes. |
data science for supply chain forecast: Data Science for Supply Chain Forecasting Nicolas Vandeput, 2021-03-22 Using data science in order to solve a problem requires a scientific mindset more than coding skills. Data Science for Supply Chain Forecasting, Second Edition contends that a true scientific method which includes experimentation, observation, and constant questioning must be applied to supply chains to achieve excellence in demand forecasting. This second edition adds more than 45 percent extra content with four new chapters including an introduction to neural networks and the forecast value added framework. Part I focuses on statistical traditional models, Part II, on machine learning, and the all-new Part III discusses demand forecasting process management. The various chapters focus on both forecast models and new concepts such as metrics, underfitting, overfitting, outliers, feature optimization, and external demand drivers. The book is replete with do-it-yourself sections with implementations provided in Python (and Excel for the statistical models) to show the readers how to apply these models themselves. This hands-on book, covering the entire range of forecasting—from the basics all the way to leading-edge models—will benefit supply chain practitioners, forecasters, and analysts looking to go the extra mile with demand forecasting. Events around the book Link to a De Gruyter Online Event in which the author Nicolas Vandeput together with Stefan de Kok, supply chain innovator and CEO of Wahupa; Spyros Makridakis, professor at the University of Nicosia and director of the Institute For the Future (IFF); and Edouard Thieuleux, founder of AbcSupplyChain, discuss the general issues and challenges of demand forecasting and provide insights into best practices (process, models) and discussing how data science and machine learning impact those forecasts. The event will be moderated by Michael Gilliland, marketing manager for SAS forecasting software: https://youtu.be/1rXjXcabW2s |
data science for supply chain forecast: Tcl/Tk in a Nutshell Paul Raines, Jeff Tranter, 1999-03-25 The Tcl language and Tk graphical toolkit are simple and powerful building blocks for custom applications. The Tcl/Tk combination is increasingly popular because it lets you produce sophisticated graphical interfaces with a few easy commands, develop and change scripts quickly, and conveniently tie together existing utilities or programming libraries.One of the attractive features of Tcl/Tk is the wide variety of commands, many offering a wealth of options. Most of the things you'd like to do have been anticipated by the language's creator, John Ousterhout, or one of the developers of Tcl/Tk's many powerful extensions. Thus, you'll find that a command or option probably exists to provide just what you need.And that's why it's valuable to have a quick reference that briefly describes every command and option in the core Tcl/Tk distribution as well as the most popular extensions. Keep this book on your desk as you write scripts, and you'll be able to find almost instantly the particular option you need.Most chapters consist of alphabetical listings. Since Tk and mega-widget packages break down commands by widget, the chapters on these topics are organized by widget along with a section of core commands where appropriate. Contents include: Core Tcl and Tk commands and Tk widgets C interface (prototypes) Expect [incr Tcl] and [incr Tk] Tix TclX BLT Oratcl, SybTcl, and Tclodbc |
data science for supply chain forecast: Demand and Supply Integration Mark A. Moon, 2018-04-09 Supply chain professionals: master pioneering techniques for integrating demand and supply, and create demand forecasts that are far more accurate and useful! In Demand and Supply Integration, Dr. Mark Moon presents the specific design characteristics of a world-class demand forecasting management process, showing how to effectively integrate demand forecasting within a comprehensive Demand and Supply Integration (DSI) process. Writing for supply chain professionals in any business, government agency, or military procurement organization, Moon explains what DSI is, how it differs from approaches such as S&OP, and how to recognize the symptoms of failures to sufficiently integrate demand and supply. He outlines the key characteristics of successful DSI implementations, shows how to approach Demand Forecasting as a management process, and guides you through understanding, selecting, and applying the best available qualitative and quantitative forecasting techniques. You'll learn how to thoroughly reflect market intelligence in your forecasts; measure your forecasting performance; implement state-of-the-art demand forecasting systems; manage Demand Reviews, and much more. |
data science for supply chain forecast: Consumption-Based Forecasting and Planning Charles W. Chase, 2021-08-03 Discover a new, demand-centric framework for forecasting and demand planning In Consumption-Based Forecasting and Planning, thought leader and forecasting expert Charles W. Chase delivers a practical and novel approach to retail and consumer goods companies demand planning process. The author demonstrates why a demand-centric approach relying on point-of-sale and syndicated scanner data is necessary for success in the new digital economy. The book showcases short- and mid-term demand sensing and focuses on disruptions to the marketplace caused by the digital economy and COVID-19. You’ll also learn: How to improve demand forecasting and planning accuracy, reduce inventory costs, and minimize waste and stock-outs What is driving shifting consumer demand patterns, including factors like price, promotions, in-store merchandising, and unplanned and unexpected events How to apply analytics and machine learning to your forecasting challenges using proven approaches and tactics described throughout the book via several case studies. Perfect for executives, directors, and managers at retailers, consumer products companies, and other manufacturers, Consumption-Based Forecasting and Planning will also earn a place in the libraries of sales, marketing, supply chain, and finance professionals seeking to sharpen their understanding of how to predict future consumer demand. |
data science for supply chain forecast: Next Generation Demand Management Charles W. Chase, 2016-08-01 A practical framework for revenue-boosting supply chain management Next Generation Demand Management is a guidebook to next generation Demand Management, with an implementation framework that improves revenue forecasts and enhances profitability. This proven approach is structured around the four key catalysts of an efficient planning strategy: people, processes, analytics, and technology. The discussion covers the changes in behavior, skills, and integrated processes that are required for proper implementation, as well as the descriptive and predictive analytics tools and skills that make the process sustainable. Corporate culture changes require a shift in leadership focus, and this guide describes the necessary champion with the authority to drive adoption and stress accountability while focusing on customer excellence. Real world examples with actual data illustrate important concepts alongside case studies highlighting best-in-class as well as startup approaches. Reliable forecasts are the primary product of demand planning, a multi-step operational supply chain management process that is increasingly seen as a survival tactic in the changing marketplace. This book provides a practical framework for efficient implementation, and complete guidance toward the supplementary changes required to reap the full benefit. Learn the key principles of demand driven planning Implement new behaviors, skills, and processes Adopt scalable technology and analytics capabilities Align inventory with demand, and increase channel profitability Whether your company is a large multinational or an early startup, your revenue predictions are only as strong as your supply chain management system. Implementing a proven, more structured process can be the catalyst your company needs to overcome that one lingering obstacle between forecast and goal. Next Generation Demand Management gives you the framework for building the foundation of your growth. |
data science for supply chain forecast: Sales Engagement Manny Medina, Max Altschuler, Mark Kosoglow, 2019-03-12 Engage in sales—the modern way Sales Engagement is how you engage and interact with your potential buyer to create connection, grab attention, and generate enough interest to create a buying opportunity. Sales Engagement details the modern way to build the top of the funnel and generate qualified leads for B2B companies. This book explores why a Sales Engagement strategy is so important, and walks you through the modern sales process to ensure you’re effectively connecting with customers every step of the way. • Find common factors holding your sales back—and reverse them through channel optimization • Humanize sales with personas and relevant information at every turn • Understand why A/B testing is so incredibly critical to success, and how to do it right • Take your sales process to the next level with a rock solid, modern Sales Engagement strategy This book is essential reading for anyone interested in up-leveling their game and doing more than they ever thought possible. |
data science for supply chain forecast: Global Supply Chain and Operations Management Dmitry Ivanov, Alexander Tsipoulanidis, Jörn Schönberger, 2021-11-19 The third edition of this textbook comprehensively discusses global supply chain and operations management (SCOM), combining value creation networks and interacting processes. It focuses on operational roles within networks and presents the quantitative and organizational methods needed to plan and control the material, information, and financial flows in supply chains. Each chapter begins with an introductory case study, while numerous examples from various industries and services help to illustrate the key concepts. The book explains how to design operations and supply networks and how to incorporate suppliers and customers. It examines how to balance supply and demand, a core aspect of tactical planning, before turning to the allocation of resources to meet customer needs. In addition, the book presents state-of-the-art research reflecting the lessons learned from the COVID-19 pandemic, and emerging, fast-paced developments in the digitalization of supply chain and operations management. Providing readers with a working knowledge of global supply chain and operations management, with a focus on bridging the gap between theory and practice, this textbook can be used in core, specialized, and advanced classes alike. It is intended for a broad range of students and professionals in supply chain and operations management. |
data science for supply chain forecast: Inventory and Supply Chain Management with Forecast Updates Suresh P. Sethi, Houmin Yan, Hanqin Zhang, 2006-03-30 Real problems are formulated into tractable mathematical models, which allow for an analysis of various approaches. Attention is focused on solutions. Provides a unified treatment of the models discussed , presents a critique of the existing results, and points out potential research directions. |
data science for supply chain forecast: Supply Chain Analytics Peter W. Robertson, 2020-11-25 Supply Chain Analytics introduces the reader to data analytics and demonstrates the value of their effective use in supply chain management. By describing the key supply chain processes through worked examples, and the descriptive, predictive and prescriptive analytic methods that can be applied to bring about improvements to those processes, the book presents a more comprehensive learning experience for the reader than has been offered previously. Key topics are addressed, including optimisation, big data, data mining and cloud computing. The author identifies four core supply chain processes – strategy, design, execution and people – to which the analytic techniques explained can be applied to ensure continuous improvement. Pedagogy to aid learning is incorporated throughout, including an opening section for each chapter explaining the learnings designed for the chapter; worked examples illustrating how each analytic technique works, how it is applied and what to be careful of; tables, diagrams and equations to help ‘visualise’ the concepts and methods covered; chapter case studies; and end-of-chapter review questions and assignment tasks. Providing both management expertise and technical skills, which are essential to decision-makers in the supply chain, this textbook should be essential reading for advanced undergraduate and postgraduate students of supply chain analytics, supply chain leadership, and supply chain and operations management. Its practice-based and applied approach also makes it valuable for operating supply chain practitioners and those studying for professional qualifications. Online resources include chapter-by-chapter PowerPoint slides, tutorial exercises, written assignments and a test bank of exam questions. |
data science for supply chain forecast: Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions Matt Taddy, 2019-08-23 Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling Understand how use ML tools in real world business problems, where causation matters more that correlation Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science. |
data science for supply chain forecast: Handbook of Quantitative Supply Chain Analysis David Simchi-Levi, S. David Wu, Zuo-Jun Shen, 2004-05-31 The Handbook is a comprehensive research reference that is essential for anyone interested in conducting research in supply chain. Unique features include: -A focus on the intersection of quantitative supply chain analysis and E-Business, -Unlike other edited volumes in the supply chain area, this is a handbook rather than a collection of research papers. Each chapter was written by one or more leading researchers in the area. These authors were invited on the basis of their scholarly expertise and unique insights in a particular sub-area, -As much attention is given to looking back as to looking forward. Most chapters discuss at length future research needs and research directions from both theoretical and practical perspectives, -Most chapters describe in detail the quantitative models used for analysis and the theoretical underpinnings; many examples and case studies are provided to demonstrate how the models and the theoretical insights are relevant to real situations, -Coverage of most state-of-the-art business practices in supply chain management. |
data science for supply chain forecast: Operations and Supply Chain Management Essentials You Always Wanted To Know Vibrant Publishers, Ashley McDonough, 2019-10-10 After reading this book, you will be able to answer the following questions: I. What is Operations and Supply Chain Management and why is it important? ii. What are the key functions within this field, and how do they interact with one another and the broader business? iii. What are the responsibilities and decisions that managers in each functional area think about? iv. How will disruptions in the Supply Chain impact the business world and our lives going forward? v. What are the practical applications of the knowledge gained around Supply Chain Operations? Have you ever wondered what your peers meant by “Supply Chain” or “Operations”, or why either of these fields matter? What about people that work in these roles – what do they actually do? In Operations and Supply Chain Management Essentials You Always Wanted to Know these questions will be answered, and more. This practical, yet simple, guide uses a hypothetical company and the consumer product they make, to explain how the various functions within the Supply Chain intertwine and contribute to bring a finished product to life for consumers in the market. You don’t need a management background to understand our story of how new demands, changing preferences, and unforeseen circumstances force this fictional company to adapt in order to survive. By posing questions that Supply Chain Operations Manager’s face, you will start to think like a Supply Chain Operations professional, whether it be in professional or personal applications. You may not be inspired to make a career shift into these areas or chat Supply Chain topics at the dinner table, however, you will gain an understanding and appreciation for how these activities make everyday products and services at our disposal – and why this is increasingly important for companies to pay attention to. About the Series The Self-Learning Management series is designed to help students, new managers, career switchers and entrepreneurs learn essential management lessons. This series is designed to address every aspect of business from HR to Finance to Marketing to Operations, be it any industry. Each book includes basic fundamentals, important concepts, standard and well-known principles as well as practical ways of application of the subject matter. The distinctiveness of the series lies in that all the relevant information is bundled in a compact form that is very easy to interpret. |
data science for supply chain forecast: Principles Ray Dalio, 2018-08-07 #1 New York Times Bestseller “Significant...The book is both instructive and surprisingly moving.” —The New York Times Ray Dalio, one of the world’s most successful investors and entrepreneurs, shares the unconventional principles that he’s developed, refined, and used over the past forty years to create unique results in both life and business—and which any person or organization can adopt to help achieve their goals. In 1975, Ray Dalio founded an investment firm, Bridgewater Associates, out of his two-bedroom apartment in New York City. Forty years later, Bridgewater has made more money for its clients than any other hedge fund in history and grown into the fifth most important private company in the United States, according to Fortune magazine. Dalio himself has been named to Time magazine’s list of the 100 most influential people in the world. Along the way, Dalio discovered a set of unique principles that have led to Bridgewater’s exceptionally effective culture, which he describes as “an idea meritocracy that strives to achieve meaningful work and meaningful relationships through radical transparency.” It is these principles, and not anything special about Dalio—who grew up an ordinary kid in a middle-class Long Island neighborhood—that he believes are the reason behind his success. In Principles, Dalio shares what he’s learned over the course of his remarkable career. He argues that life, management, economics, and investing can all be systemized into rules and understood like machines. The book’s hundreds of practical lessons, which are built around his cornerstones of “radical truth” and “radical transparency,” include Dalio laying out the most effective ways for individuals and organizations to make decisions, approach challenges, and build strong teams. He also describes the innovative tools the firm uses to bring an idea meritocracy to life, such as creating “baseball cards” for all employees that distill their strengths and weaknesses, and employing computerized decision-making systems to make believability-weighted decisions. While the book brims with novel ideas for organizations and institutions, Principles also offers a clear, straightforward approach to decision-making that Dalio believes anyone can apply, no matter what they’re seeking to achieve. Here, from a man who has been called both “the Steve Jobs of investing” and “the philosopher king of the financial universe” (CIO magazine), is a rare opportunity to gain proven advice unlike anything you’ll find in the conventional business press. |
data science for supply chain forecast: Introduction to Time Series Analysis and Forecasting Douglas C. Montgomery, Cheryl L. Jennings, Murat Kulahci, 2015-04-21 Praise for the First Edition ...[t]he book is great for readers who need to apply the methods and models presented but have little background in mathematics and statistics. -MAA Reviews Thoroughly updated throughout, Introduction to Time Series Analysis and Forecasting, Second Edition presents the underlying theories of time series analysis that are needed to analyze time-oriented data and construct real-world short- to medium-term statistical forecasts. Authored by highly-experienced academics and professionals in engineering statistics, the Second Edition features discussions on both popular and modern time series methodologies as well as an introduction to Bayesian methods in forecasting. Introduction to Time Series Analysis and Forecasting, Second Edition also includes: Over 300 exercises from diverse disciplines including health care, environmental studies, engineering, and finance More than 50 programming algorithms using JMP®, SAS®, and R that illustrate the theory and practicality of forecasting techniques in the context of time-oriented data New material on frequency domain and spatial temporal data analysis Expanded coverage of the variogram and spectrum with applications as well as transfer and intervention model functions A supplementary website featuring PowerPoint® slides, data sets, and select solutions to the problems Introduction to Time Series Analysis and Forecasting, Second Edition is an ideal textbook upper-undergraduate and graduate-levels courses in forecasting and time series. The book is also an excellent reference for practitioners and researchers who need to model and analyze time series data to generate forecasts. |
data science for supply chain forecast: Big Data Analytics in Supply Chain Management Iman Rahimi, Amir H. Gandomi, Simon James Fong, M. Ali Ülkü, 2020-12-20 In a world of soaring digitization, social media, financial transactions, and production and logistics processes constantly produce massive data. Employing analytical tools to extract insights and foresights from data improves the quality, speed, and reliability of solutions to highly intertwined issues faced in supply chain operations. From procurement in Industry 4.0 to sustainable consumption behavior to curriculum development for data scientists, this book offers a wide array of techniques and theories of Big Data Analytics applied to Supply Chain Management. It offers a comprehensive overview and forms a new synthesis by bringing together seemingly divergent fields of research. Intended for Engineering and Business students, scholars, and professionals, this book is a collection of state-of-the-art research and best practices to spur discussion about and extend the cumulant knowledge of emerging supply chain problems. |
data science for supply chain forecast: Supply Chain Planning and Analytics Gerald Feigin, 2011-08-31 Every company must continually wrestle with the problem of deciding the right quantity and mix of products or services that it should produce as well as when and where to produce them. The problem is challenging because the decision must be made with uncertain and conflicting information about future demand, available production capacity, and sources of supply. The decision is in fact a highly complex balancing act, involving tradeoffs along many dimensions - for example, inventory targets vs. customer service levels, older products vs. newer ones, direct customers vs. channel partners - and requiring the compromise of constituents - sales, marketing, operations, procurement, product development, finance, as well as suppliers and customers - with varied objectives. The ability of a company to nimbly navigate this decision process without giving too much influence to any of the parties involved largely determines how well the company can respond to changing market conditions and ultimately whether the company will continue to thrive. This book focuses on the complex challenges of supply chain planning - the set of business processes that companies use for planning to meet future demand. Supply chain planning comprises a variety of planning processes within an organization: demand planning, sales & operations planning, inventory planning, promotion planning, supply planning, production planning, distribution planning, and capacity planning. Of course, not all companies engage in all of these planning activities and they may refer to these activities by other names but they all struggle with the on-going effort of matching demand with supply. Many textbooks address supply chain planning problems and present mathematical tools and methods for solving certain classes of problems. This book is intended to complement these texts by focusing not on the mathematical models but on the problems that arise in practice that either these models do not adequately address or that make applying the models difficult or impossible. The book is not intended to provide pat solutions to these problems, but more to highlight the complexities and subtleties involved and describe ways to overcome practical issues that have worked for some companies. |
data science for supply chain forecast: Forecasting Demand and Supply of Doctoral Scientists and Engineers National Research Council, Office of Scientific and Engineering Personnel, 2000-07-31 This report is the summary of a workshop conducted by the National Research Council in order to learn from both forecast makers and forecast users about improvements that can be made in understanding the markets for doctoral scientists and engineers. The workshop commissioned papers examined (1) the history and problems with models of demand and supply for scientists and engineers, (2) objectives and approaches to forecasting models, (3) margins of adjustment that have been neglected in models, especially substitution and quality, (4) the presentation of uncertainty, and (5) whether these forecasts of supply and demand are worthwhile, given all their shortcomings. The focus of the report was to provide guidance to the NSF and to scholars in this area on how models and the forecasts derived from them might be improved, and what role NSF should play in their improvement. In addition, the report examined issues of reporting forecasts to policymakers. |
data science for supply chain forecast: Advanced Forecasting with Python Joos Korstanje, 2021-07-03 Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook’s open-source Prophet model, and Amazon’s DeepAR model. Rather than focus on a specific set of models, this book presents an exhaustive overview of all the techniques relevant to practitioners of forecasting. It begins by explaining the different categories of models that are relevant for forecasting in a high-level language. Next, it covers univariate and multivariate time series models followed by advanced machine learning and deep learning models. It concludes with reflections on model selection such as benchmark scores vs. understandability of models vs. compute time, and automated retraining and updating of models. Each of the models presented in this book is covered in depth, with an intuitive simple explanation of the model, a mathematical transcription of the idea, and Python code that applies the model to an example data set. Reading this book will add a competitive edge to your current forecasting skillset. The book is also adapted to those who have recently started working on forecasting tasks and are looking for an exhaustive book that allows them to start with traditional models and gradually move into more and more advanced models. What You Will Learn Carry out forecasting with Python Mathematically and intuitively understand traditional forecasting models and state-of-the-art machine learning techniques Gain the basics of forecasting and machine learning, including evaluation of models, cross-validation, and back testing Select the right model for the right use case Who This Book Is For The advanced nature of the later chapters makes the book relevant for applied experts working in the domain of forecasting, as the models covered have been published only recently. Experts working in the domain will want to update their skills as traditional models are regularly being outperformed by newer models. |
data science for supply chain forecast: Retail Analytics Anna-Lena Sachs, 2014-12-10 This book addresses the challenging task of demand forecasting and inventory management in retailing. It analyzes how information from point-of-sale scanner systems can be used to improve inventory decisions, and develops a data-driven approach that integrates demand forecasting and inventory management for perishable products, while taking unobservable lost sales and substitution into account in out-of-stock situations. Using linear programming, a new inventory function that reflects the causal relationship between demand and external factors such as price and weather is proposed. The book subsequently demonstrates the benefits of this new approach in numerical studies that utilize real data collected at a large European retail chain. Furthermore, the book derives an optimal inventory policy for a multi-product setting in which the decision-maker faces an aggregated service level target, and analyzes whether the decision-maker is subject to behavioral biases based on real data for bakery products. |
data science for supply chain forecast: Demand Forecasting for Inventory Control Nick T. Thomopoulos, 2014-12-04 This book describes the methods used to forecast the demands at inventory holding locations. The methods are proven, practical and doable for most applications, and pertain to demand patterns that are horizontal, trending, seasonal, promotion and multi-sku. The forecasting methods include regression, moving averages, discounting, smoothing, two-stage forecasts, dampening forecasts, advance demand forecasts, initial forecasts, all time forecasts, top-down, bottom-up, raw and integer forecasts, Also described are demand history, demand profile, forecast error, coefficient of variation, forecast sensitivity and filtering outliers. The book shows how the forecasts with the standard normal, partial normal and truncated normal distributions are used to generate the safety stock for the availability and the percent fill customer service methods. The material presents topics that people want and should know in the work place. The presentation is easy to read for students and practitioners; there is little need to delve into difficult mathematical relationships, and numerical examples are presented throughout to guide the reader on applications. Practitioners will be able to apply the methods learned to the systems in their locations, and the typical worker will want the book on their bookshelf for reference. The potential market is vast. It includes everyone in professional organizations like APICS, DSI and INFORMS; MBA graduates, people in industry, and students in management science, business and industrial engineering. |
data science for supply chain forecast: Business Forecasting with Accompanying Excel-based Forecastx Software J. Holton Wilson, Barry Keating, 2001 |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open …
Belmont Forum Adopts Open Data Principles for Environme…
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data …
Belmont Forum Data Accessibility Statement an…
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. …