Advertisement
data science for social good fellowship: Big Data and Social Science Ian Foster, Rayid Ghani, Ron S. Jarmin, Frauke Kreuter, Julia Lane, 2016-09-15 Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website. |
data science for social good fellowship: Data Science Thinking Longbing Cao, 2018-08-17 This book explores answers to the fundamental questions driving the research, innovation and practices of the latest revolution in scientific, technological and economic development: how does data science transform existing science, technology, industry, economy, profession and education? How does one remain competitive in the data science field? What is responsible for shaping the mindset and skillset of data scientists? Data Science Thinking paints a comprehensive picture of data science as a new scientific paradigm from the scientific evolution perspective, as data science thinking from the scientific-thinking perspective, as a trans-disciplinary science from the disciplinary perspective, and as a new profession and economy from the business perspective. |
data science for social good fellowship: Envisioning the Data Science Discipline National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-03-05 The need to manage, analyze, and extract knowledge from data is pervasive across industry, government, and academia. Scientists, engineers, and executives routinely encounter enormous volumes of data, and new techniques and tools are emerging to create knowledge out of these data, some of them capable of working with real-time streams of data. The nation's ability to make use of these data depends on the availability of an educated workforce with necessary expertise. With these new capabilities have come novel ethical challenges regarding the effectiveness and appropriateness of broad applications of data analyses. The field of data science has emerged to address the proliferation of data and the need to manage and understand it. Data science is a hybrid of multiple disciplines and skill sets, draws on diverse fields (including computer science, statistics, and mathematics), encompasses topics in ethics and privacy, and depends on specifics of the domains to which it is applied. Fueled by the explosion of data, jobs that involve data science have proliferated and an array of data science programs at the undergraduate and graduate levels have been established. Nevertheless, data science is still in its infancy, which suggests the importance of envisioning what the field might look like in the future and what key steps can be taken now to move data science education in that direction. This study will set forth a vision for the emerging discipline of data science at the undergraduate level. This interim report lays out some of the information and comments that the committee has gathered and heard during the first half of its study, offers perspectives on the current state of data science education, and poses some questions that may shape the way data science education evolves in the future. The study will conclude in early 2018 with a final report that lays out a vision for future data science education. |
data science for social good fellowship: Social Sensing Dong Wang, Tarek Abdelzaher, Lance Kaplan, 2015-04-17 Increasingly, human beings are sensors engaging directly with the mobile Internet. Individuals can now share real-time experiences at an unprecedented scale. Social Sensing: Building Reliable Systems on Unreliable Data looks at recent advances in the emerging field of social sensing, emphasizing the key problem faced by application designers: how to extract reliable information from data collected from largely unknown and possibly unreliable sources. The book explains how a myriad of societal applications can be derived from this massive amount of data collected and shared by average individuals. The title offers theoretical foundations to support emerging data-driven cyber-physical applications and touches on key issues such as privacy. The authors present solutions based on recent research and novel ideas that leverage techniques from cyber-physical systems, sensor networks, machine learning, data mining, and information fusion. Offers a unique interdisciplinary perspective bridging social networks, big data, cyber-physical systems, and reliability Presents novel theoretical foundations for assured social sensing and modeling humans as sensors Includes case studies and application examples based on real data sets Supplemental material includes sample datasets and fact-finding software that implements the main algorithms described in the book |
data science for social good fellowship: Big Data and Social Science Ian Foster, Rayid Ghani, Ron S. Jarmin, Frauke Kreuter, Julia Lane, 2016-08-10 Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website. |
data science for social good fellowship: Markets for Good Selected Readings: Making Sense of Data and Information in the Social Sector Markets for Good, 2014-02-13 Markets for Good is an effort by the Bill & Melinda Gates Foundation, the William & Flora Hewlett Foundation, and the progressive financial firm Liquidnet to improve the system for generating, sharing, and acting upon data and information in the social sector. Our vision is of a social sector powered by information, where interventions are more effective and innovative, where capital flows efficiently to the organizations that are having the greatest impact, and where there is a dynamic culture of continuous learning and development. Over the past several years, Markets for Good has been a forum for discussion and collaboration among online giving platforms, nonprofit information providers, nonprofit evaluators, philanthropic advisors, and other entities working to improve the global philanthropic system and social sector. This effort has included over 50 people from more than 20 organizations. The website, MarketsforGood.org, and the work that we hope follows from it, is an outgrowth of what we have learned and observed through this collaboration. This retrospective collection of selected readings from our site includes an introduction by Jeff Raikes, CEO of the Bill & Melinda Gates Foundation, in which he highlights the continuing wave of efforts that will push our sector to achieve even greater impact. Following Jeff's introduction, the Markets for Good Collaboration Team recaps the first 15 months of the campaign, and how they expect Markets for Good to evolve going forward. The subsequent 17 posts and authors' updates provide a range of perspectives on the most critical data-related challenges facing the social sector, and how these challenges can be addressed. Posts were chosen for their high readership, topic diversity, and thought leadership. The authors debate new and recurring hurdles in the social sector, like capacity and capital constraints; how qualitative data, including stories and beneficiary insights, can be incorporated into data-driven decision processes; and big-, medium-, and small-data management. |
data science for social good fellowship: Data Feminism Catherine D'Ignazio, Lauren F. Klein, 2023-10-03 A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought. Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.” Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed. |
data science for social good fellowship: Statistics for Empowerment and Social Engagement Jim Ridgway, 2023-03-10 “This book is a remarkable achievement” Gerd Gigerenzer This book offers practical approaches to working in a new field of knowledge - Civic Statistics - which sets out to engage with, and overcome well documented and long-standing problems in teaching quantitative skills. The book includes 23 peer-reviewed chapters, written in coordination by an international group of experts from ten countries. The book aims to support and enhance the work of teachers and lecturers working both at the high school and tertiary (university) levels. It is designed to promote and improve the critical understanding of quantitative evidence relevant to burning social issues – such as epidemics, climate change, poverty, migration, natural disasters, inequality, employment, and racism. Effective citizen engagement with social issues requires active participation and a broad understanding of data and statistics about societal issues. However, many statistics curricula are not designed to teach relevant skills nor to improve learners' statistical literacy. Evidence about social issues is provided to the public via print and digital media, official statistics offices, and other information channels, and a great deal of data is accessible both as aggregated summaries and as individual records. Chapters illustrate the approaches needed to teach and promote the knowledge, skills, dispositions, and enabling processes associated with critical understanding of Civic Statistics presented in many forms. These include: statistical analysis of authentic multivariate data; use of dynamic data visualisations; deconstructing texts about the social and economic well-being of societies and communities. Chapters discuss: the development of curricula and educational resources; use of emerging technologies and visualizations; preparation of teachers and teaching approaches; sources for relevant datasets and rich texts about Civic Statistics; ideas regarding future research, assessment, collaborations between different stakeholders; and other systemic issues. |
data science for social good fellowship: Profiting from the Data Economy David A. Schweidel, 2015 Data is everywhere. Good data. Bad data. Small data. Big data. What are the implications of all this data to businesses and consumers? Can we use it to deliver real benefits to consumers and citizens without sacrificing the privacy they still value? What are the responsibilities of businesses and government in stewarding today's massive collections of data? How are those responsibilities changing? In Profiting from the Data Economy, pioneering marketing analytics researcher David Schweidel answers these and other crucial questions. Throughout this complete, up-to-date briefing on the transformative impact of ubiquitous Big Data, Schweidel illuminates key emerging trends with powerful case studies. The goal: to help you make better decisions about data-as an executive, marketer, IT professional, policymaker, consumer, and citizen. |
data science for social good fellowship: A Hands-On Introduction to Data Science Chirag Shah, 2020-04-02 An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines. |
data science for social good fellowship: Training Students to Extract Value from Big Data National Research Council, Division on Engineering and Physical Sciences, Board on Mathematical Sciences and Their Applications, Committee on Applied and Theoretical Statistics, 2015-01-16 As the availability of high-throughput data-collection technologies, such as information-sensing mobile devices, remote sensing, internet log records, and wireless sensor networks has grown, science, engineering, and business have rapidly transitioned from striving to develop information from scant data to a situation in which the challenge is now that the amount of information exceeds a human's ability to examine, let alone absorb, it. Data sets are increasingly complex, and this potentially increases the problems associated with such concerns as missing information and other quality concerns, data heterogeneity, and differing data formats. The nation's ability to make use of data depends heavily on the availability of a workforce that is properly trained and ready to tackle high-need areas. Training students to be capable in exploiting big data requires experience with statistical analysis, machine learning, and computational infrastructure that permits the real problems associated with massive data to be revealed and, ultimately, addressed. Analysis of big data requires cross-disciplinary skills, including the ability to make modeling decisions while balancing trade-offs between optimization and approximation, all while being attentive to useful metrics and system robustness. To develop those skills in students, it is important to identify whom to teach, that is, the educational background, experience, and characteristics of a prospective data-science student; what to teach, that is, the technical and practical content that should be taught to the student; and how to teach, that is, the structure and organization of a data-science program. Training Students to Extract Value from Big Data summarizes a workshop convened in April 2014 by the National Research Council's Committee on Applied and Theoretical Statistics to explore how best to train students to use big data. The workshop explored the need for training and curricula and coursework that should be included. One impetus for the workshop was the current fragmented view of what is meant by analysis of big data, data analytics, or data science. New graduate programs are introduced regularly, and they have their own notions of what is meant by those terms and, most important, of what students need to know to be proficient in data-intensive work. This report provides a variety of perspectives about those elements and about their integration into courses and curricula. |
data science for social good fellowship: Handbook of Computational Social Science for Policy Eleonora Bertoni, Matteo Fontana, Lorenzo Gabrielli, Serena Signorelli, Michele Vespe, 2023-01-23 This open access handbook describes foundational issues, methodological approaches and examples on how to analyse and model data using Computational Social Science (CSS) for policy support. Up to now, CSS studies have mostly developed on a small, proof-of concept, scale that prevented from unleashing its potential to provide systematic impact to the policy cycle, as well as from improving the understanding of societal problems to the definition, assessment, evaluation, and monitoring of policies. The aim of this handbook is to fill this gap by exploring ways to analyse and model data for policy support, and to advocate the adoption of CSS solutions for policy by raising awareness of existing implementations of CSS in policy-relevant fields. To this end, the book explores applications of computational methods and approaches like big data, machine learning, statistical learning, sentiment analysis, text mining, systems modelling, and network analysis to different problems in the social sciences. The book is structured into three Parts: the first chapters on foundational issues open with an exposition and description of key policymaking areas where CSS can provide insights and information. In detail, the chapters cover public policy, governance, data justice and other ethical issues. Part two consists of chapters on methodological aspects dealing with issues such as the modelling of complexity, natural language processing, validity and lack of data, and innovation in official statistics. Finally, Part three describes the application of computational methods, challenges and opportunities in various social science areas, including economics, sociology, demography, migration, climate change, epidemiology, geography, and disaster management. The target audience of the book spans from the scientific community engaged in CSS research to policymakers interested in evidence-informed policy interventions, but also includes private companies holding data that can be used to study social sciences and are interested in achieving a policy impact. |
data science for social good fellowship: Intelligent Systems and Applications Yaxin Bi, Rahul Bhatia, Supriya Kapoor, 2019-08-23 The book presents a remarkable collection of chapters covering a wide range of topics in the areas of intelligent systems and artificial intelligence, and their real-world applications. It gathers the proceedings of the Intelligent Systems Conference 2019, which attracted a total of 546 submissions from pioneering researchers, scientists, industrial engineers, and students from all around the world. These submissions underwent a double-blind peer-review process, after which 190 were selected for inclusion in these proceedings. As intelligent systems continue to replace and sometimes outperform human intelligence in decision-making processes, they have made it possible to tackle a host of problems more effectively. This branching out of computational intelligence in several directions and use of intelligent systems in everyday applications have created the need for an international conference as a venue for reporting on the latest innovations and trends. This book collects both theory and application based chapters on virtually all aspects of artificial intelligence; presenting state-of-the-art intelligent methods and techniques for solving real-world problems, along with a vision for future research, it represents a unique and valuable asset. |
data science for social good fellowship: The Public Productivity and Performance Handbook Marc Holzer, Andrew Ballard, 2021-07-25 A productive society is dependent upon high-performing government. This third edition of The Public Performance and Productivity Handbook includes chapters from leading scholars, consultants, and practitioners to explore all of the core elements of improvement. Completely revised and focused on best practice, the handbook comprehensively explores managing for high performance, measurement and analysis, costs and finances, human resources, and cutting-edge organizational tools. Its coverage of new and systematic management approaches and well-defined measurement systems provides guidance for organizations of all sizes to improve productivity and performance. The contributors discuss such topics as accountability, organizational effectiveness after budget cuts, the complementary roles of human capital and “big data,” and how to teach performance management in the classroom and in public organizations. The handbook is accompanied by an online companion volume providing examples of performance measurement and improvement manuals across a wide variety of public organizations. The Public Performance and Productivity Handbook, Third Edition, is required reading for all public administration practitioners, as well as for students and scholars interested in the state of the public performance and productivity field. |
data science for social good fellowship: Roundtable on Data Science Postsecondary Education National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Division on Engineering and Physical Sciences, Board on Science Education, Computer Science and Telecommunications Board, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, 2020-10-02 Established in December 2016, the National Academies of Sciences, Engineering, and Medicine's Roundtable on Data Science Postsecondary Education was charged with identifying the challenges of and highlighting best practices in postsecondary data science education. Convening quarterly for 3 years, representatives from academia, industry, and government gathered with other experts from across the nation to discuss various topics under this charge. The meetings centered on four central themes: foundations of data science; data science across the postsecondary curriculum; data science across society; and ethics and data science. This publication highlights the presentations and discussions of each meeting. |
data science for social good fellowship: Data Activism and Social Change Miren Gutiérrez, 2018-05-02 This book efficiently contributes to our understanding of the interplay between data, technology and communicative practice on the one hand, and democratic participation on the other. It addresses the emergence of proactive data activism, a new sociotechnical phenomenon in the field of action that arises as a reaction to massive datafication, and makes affirmative use of data for advocacy and social change. By blending empirical observation and in-depth qualitative interviews, Gutiérrez brings to the fore a debate about the social uses of the data infrastructure and examines precisely how people employ it, in combination with other technologies, to collaborate and act for social change. |
data science for social good fellowship: Analytics, Policy, and Governance Jennifer Bachner, Benjamin Ginsberg, Kathryn Wagner Hill, 2017-01-01 Cover -- Half-title -- Title -- Copyright -- Contents -- Introduction -- PART I: ENGAGING THE DATA -- 1 Measuring Political and Policy Preferences Using Item Response Scaling -- 2 Causal Inference with Observational Data -- 3 Causal Inference with Experimental Data -- PART II: EMERGING DATA SOURCES AND TECHNIQUES -- 4 Descriptive Network Analysis: Interest Group Lobbying Dynamics Around Immigration Policy -- 5 Learning from Place in the Era of Geolocation -- 6 Text Analysis: Estimating Policy Preferences from Written and Spoken Words -- 7 Machine Learning and Governance -- PART III: IMPLICATIONS FOR GOVERNANCE -- 8 Governing a Data-Driven Society -- 9 Big Data and Privacy -- 10 Reflections on Analytics: Knowledge and Power -- List of Contributors -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y |
data science for social good fellowship: Power to the Public Tara Dawson McGuinness, Hana Schank, 2023-04-18 “Worth a read for anyone who cares about making change happen.”—Barack Obama A powerful new blueprint for how governments and nonprofits can harness the power of digital technology to help solve the most serious problems of the twenty-first century As the speed and complexity of the world increases, governments and nonprofit organizations need new ways to effectively tackle the critical challenges of our time—from pandemics and global warming to social media warfare. In Power to the Public, Tara Dawson McGuinness and Hana Schank describe a revolutionary new approach—public interest technology—that has the potential to transform the way governments and nonprofits around the world solve problems. Through inspiring stories about successful projects ranging from a texting service for teenagers in crisis to a streamlined foster care system, the authors show how public interest technology can make the delivery of services to the public more effective and efficient. At its heart, public interest technology means putting users at the center of the policymaking process, using data and metrics in a smart way, and running small experiments and pilot programs before scaling up. And while this approach may well involve the innovative use of digital technology, technology alone is no panacea—and some of the best solutions may even be decidedly low-tech. Clear-eyed yet profoundly optimistic, Power to the Public presents a powerful blueprint for how government and nonprofits can help solve society’s most serious problems. |
data science for social good fellowship: Big Data Is Not a Monolith Cassidy R. Sugimoto, Hamid R. Ekbia, Michael Mattioli, 2016-10-21 Perspectives on the varied challenges posed by big data for health, science, law, commerce, and politics. Big data is ubiquitous but heterogeneous. Big data can be used to tally clicks and traffic on web pages, find patterns in stock trades, track consumer preferences, identify linguistic correlations in large corpuses of texts. This book examines big data not as an undifferentiated whole but contextually, investigating the varied challenges posed by big data for health, science, law, commerce, and politics. Taken together, the chapters reveal a complex set of problems, practices, and policies. The advent of big data methodologies has challenged the theory-driven approach to scientific knowledge in favor of a data-driven one. Social media platforms and self-tracking tools change the way we see ourselves and others. The collection of data by corporations and government threatens privacy while promoting transparency. Meanwhile, politicians, policy makers, and ethicists are ill-prepared to deal with big data's ramifications. The contributors look at big data's effect on individuals as it exerts social control through monitoring, mining, and manipulation; big data and society, examining both its empowering and its constraining effects; big data and science, considering issues of data governance, provenance, reuse, and trust; and big data and organizations, discussing data responsibility, “data harm,” and decision making. Contributors Ryan Abbott, Cristina Alaimo, Kent R. Anderson, Mark Andrejevic, Diane E. Bailey, Mike Bailey, Mark Burdon, Fred H. Cate, Jorge L. Contreras, Simon DeDeo, Hamid R. Ekbia, Allison Goodwell, Jannis Kallinikos, Inna Kouper, M. Lynne Markus, Michael Mattioli, Paul Ohm, Scott Peppet, Beth Plale, Jason Portenoy, Julie Rennecker, Katie Shilton, Dan Sholler, Cassidy R. Sugimoto, Isuru Suriarachchi, Jevin D. West |
data science for social good fellowship: ECML PKDD 2020 Workshops Irena Koprinska, Michael Kamp, Annalisa Appice, Corrado Loglisci, Luiza Antonie, Albrecht Zimmermann, Riccardo Guidotti, Özlem Özgöbek, Rita P. Ribeiro, Ricard Gavaldà, João Gama, Linara Adilova, Yamuna Krishnamurthy, Pedro M. Ferreira, Donato Malerba, Ibéria Medeiros, Michelangelo Ceci, Giuseppe Manco, Elio Masciari, Zbigniew W. Ras, Peter Christen, Eirini Ntoutsi, Erich Schubert, Arthur Zimek, Anna Monreale, Przemyslaw Biecek, Salvatore Rinzivillo, Benjamin Kille, Andreas Lommatzsch, Jon Atle Gulla, 2021-02-01 This volume constitutes the refereed proceedings of the workshops which complemented the 20th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in September 2020. Due to the COVID-19 pandemic the conference and workshops were held online. The 43 papers presented in volume were carefully reviewed and selected from numerous submissions. The volume presents the papers that have been accepted for the following workshops: 5th Workshop on Data Science for Social Good, SoGood 2020; Workshop on Parallel, Distributed and Federated Learning, PDFL 2020; Second Workshop on Machine Learning for Cybersecurity, MLCS 2020, 9th International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2020, Workshop on Data Integration and Applications, DINA 2020, Second Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning, EDML 2020, Second International Workshop on eXplainable Knowledge Discovery in Data Mining, XKDD 2020; 8th International Workshop on News Recommendation and Analytics, INRA 2020. The papers from INRA 2020 are published open access and licensed under the terms of the Creative Commons Attribution 4.0 International License. |
data science for social good fellowship: Essentials of Sociology George Ritzer, 2015-12-10 Join the conversation with one of sociology’s best-known thinkers. Essentials of Sociology, Second Edition adapted from George Ritzer’s Introduction to Sociology, Third Edition, provides the same rock-solid foundation in a shorter and more streamlined format. Like the original Ritzer text, Essentials of Sociology illuminates traditional sociological concepts and theories, and focuses on some of the most compelling contemporary social phenomena: globalization, consumer culture, the Internet, and the “McDonaldization” of society. As technology flattens the globe, students are challenged to apply a sociological perspective to their world, and to see how “public” sociologists are engaging with the critical issues of today. |
data science for social good fellowship: The Data Science Handbook Carl Shan, Henry Wang, William Chen, Max Song, 2015-05-03 The Data Science Handbook is a curated collection of 25 candid, honest and insightful interviews conducted with some of the world's top data scientists.In this book, you'll hear how the co-creator of the term 'data scientist' thinks about career and personal success. You'll hear from a young woman who created her own data scientist curriculum, subsequently landing her a role in the field. Readers of this book will be left with war stories, wisdom and |
data science for social good fellowship: Applying Computational Intelligence for Social Good , 2024-01-14 Applying Computational Intelligence for Social Good: Track, Understand and Build a Better World, Volume 132 presents views on how Computational Intelligent and ICT technologies can be applied to ease or solve social problems by sharing examples of research results from studies of social anxiety, environmental issues, mobility of the disabled, and problems in social safety. Sample chapters in this release include Why is implementing Computational Intelligence for social good so challenging? Principles and its Application, Smart crisis management system for road accidents using Geo-Spacial Machine Learning Techniques, Residential Energy Management System (REMS) Using Machine Learning, Text-Based Personality Prediction using XLNet, and much more. - Explores a number of key themes, including self-organization, complex adaptive systems, and emergent computation for solving socially relevant problems - Focuses on Forecasting applications, Human Behavior and Critics response analysis in social forums, Healthcare monitoring Systems, Disaster Management, Industrial management, and most recently, Epidemics and Outbreaks - Brings together many different aspects of the current research on intelligence technologies, such as neural networks, support vector machines, fuzzy logic, and evolutionary computation |
data science for social good fellowship: Introduction to Sociology George Ritzer, 2015-08-28 Join the conversation with one of sociology’s best-known thinkers. The Third Edition of Introduction to Sociology, thoroughly revised and updated, continues to show students the relevance of the introductory sociology course to their lives. While providing a rock-solid foundation, George Ritzer illuminates traditional sociological concepts and theories, as well as some of the most compelling contemporary social phenomena: globalization, consumer culture, the Internet, and the “McDonaldization” of society. As technology flattens the globe, students are challenged to apply a sociological perspective to their world, and to see how “public” sociologists are engaging with the critical issues of today. |
data science for social good fellowship: Law and Policy for the Quantum Age Chris Jay Hoofnagle, Simson L. Garfinkel, 2022-01-06 The Quantum Age cuts through the hype to demystify quantum technologies, their development paths, and the policy issues they raise. |
data science for social good fellowship: Urban Operating Systems Andres Luque-Ayala, Simon Marvin, 2020-12-15 A new wave of enthusiasm for smart cities, urban data, and the Internet of Things has created the impression that computation can solve almost any urban problem. Subjecting this claim to critical scrutiny, in this book, Andrés Luque-Ayala and Simon Marvin examine the cultural, historical, and contemporary contexts in which urban computational logics have emerged. They consider the rationalities and techniques that constitute emerging computational forms of urbanization, including work on digital urbanism, smart cities, and, more recently, platform urbanism. They explore the modest potentials and serious contradictions of reconfiguring urban life, city services, and urban-networked infrastructure through computational operating systems—an urban OS. Luque-Ayala and Marvin argue that in order to understand how digital technologies transform and shape the city, it is necessary to analyze the underlying computational logics themselves. Drawing on fieldwork that stretches across eleven cities in American, European, and Asian contexts, they investigate how digital products, services, and ecosystems are reshaping the ways in which the city is imagined, known, and governed. They discuss the reconstitution of the contemporary city through digital technologies, practices, and techniques, including data-driven governance, predictive analytics, digital mapping, urban sensing, digitally enabled control rooms, civic hacking, and open data narratives. Focusing on the relationship between the emerging operating systems of the city and their traditional infrastructures, they shed light on the political implications of using computer technologies to understand and generate new urban spaces and flows. |
data science for social good fellowship: Investing in Young Children for Peaceful Societies National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Health and Medicine Division, Board on Children, Youth, and Families, Board on Global Health, Forum on Investing in Young Children Globally, 2016-10-14 With the worst human refugee crisis since World War II as the backdrop, from March 16 through March 18, 2016, the National Academies of Sciences, Engineering, and Medicine, in partnership with UNICEF and the King Abdullah Bin Abdulaziz International Center for Inter-religious and Intercultural Dialogue (KAICIID), held a workshop in Amman, Jordan, to explore topics related to investing in young children for peaceful societies. Over the course of the workshop, researchers, policy makers, program practitioners, funders, youth, and other experts came together to understand the effects of conflict and violence on children, women, and youth across areas of health, education, nutrition, social protection, and other domains. The goal of the workshop was to continue to fill in gaps in knowledge and explore opportunities for discourse through a process of highlighting the science and practice. This publication summarizes the presentations and discussions from the workshop. |
data science for social good fellowship: Buy the Avocado Toast Stephanie Bousley, 2020-03-31 What if the solution to student debt was reinvesting in yourself? Are you a smart, hard-working person who always seems to struggle financially? Do you ever second-guess decisions to pursue higher education because of your student loans? Has extreme budgeting eliminated joy and comfort from life, yet you’re still several years away from being debt-free? Conventional wisdom tells us the formula for success is simple: go to school, get a job, work hard, repeat as needed until you retire. It tells us that debt is the result of poor choices and irresponsible spending. Unfortunately, such advice fails to take into account the recent (and not-so-recent) graduates for whom predatory student lending rates have set them back tens or even hundreds of thousands of dollars before they even enter the job market. In Buy the Avocado Toast, Stephanie Bousley shares lessons learned through years of working hard and perpetually undervaluing herself while coming to terms with owing almost $300,000 in student debt. Through a holistic approach to both net worth and self-worth, Bousley offers readers hope for their own financial situations by providing step-by-step instructions on reducing debt, living better, and rooting out the self-defeating beliefs that keep us broke. |
data science for social good fellowship: Artificial Intelligence and Conservation Fei Fang, Milind Tambe, Bistra Dilkina, Andrew J. Plumptre, 2019-03-28 With the increasing public interest in artificial intelligence (AI), there is also increasing interest in learning about the benefits that AI can deliver to society. This book focuses on research advances in AI that benefit the conservation of wildlife, forests, coral reefs, rivers, and other natural resources. It presents how the joint efforts of researchers in computer science, ecology, economics, and psychology help address the goals of the United Nations' 2030 Agenda for Sustainable Development. Written at a level accessible to conservation professionals and AI researchers, the book offers both an overview of the field and an in-depth view of how AI is being used to understand patterns in wildlife poaching and enhance patrol efforts in response, covering research advances, field tests and real-world deployments. The book also features efforts in other major conservation directions, including protecting natural resources, ecosystem monitoring, and bio-invasion management through the use of game theory, machine learning, and optimization. |
data science for social good fellowship: Machine Learning and Principles and Practice of Knowledge Discovery in Databases Michael Kamp, Irena Koprinska, Adrien Bibal, Tassadit Bouadi, Benoît Frénay, Luis Galárraga, José Oramas, Linara Adilova, Yamuna Krishnamurthy, Bo Kang, Christine Largeron, Jefrey Lijffijt, Tiphaine Viard, Pascal Welke, Massimiliano Ruocco, Erlend Aune, Claudio Gallicchio, Gregor Schiele, Franz Pernkopf, Michaela Blott, Holger Fröning, Günther Schindler, Riccardo Guidotti, Anna Monreale, Salvatore Rinzivillo, Przemyslaw Biecek, Eirini Ntoutsi, Mykola Pechenizkiy, Bodo Rosenhahn, Christopher Buckley, Daniela Cialfi, Pablo Lanillos, Maxwell Ramstead, Tim Verbelen, Pedro M. Ferreira, Giuseppina Andresini, Donato Malerba, Ibéria Medeiros, Philippe Fournier-Viger, M. Saqib Nawaz, Sebastian Ventura, Meng Sun, Min Zhou, Valerio Bitetta, Ilaria Bordino, Andrea Ferretti, Francesco Gullo, Giovanni Ponti, Lorenzo Severini, Rita Ribeiro, João Gama, Ricard Gavaldà, Lee Cooper, Naghmeh Ghazaleh, Jonas Richiardi, Damian Roqueiro, Diego Saldana Miranda, Konstantinos Sechidis, Guilherme Graça, 2022-02-18 This two-volume set constitutes the refereed proceedings of the workshops which complemented the 21th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in September 2021. Due to the COVID-19 pandemic the conference and workshops were held online. The 104 papers were thoroughly reviewed and selected from 180 papers submited for the workshops. This two-volume set includes the proceedings of the following workshops:Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence (AIMLAI 2021)Workshop on Parallel, Distributed and Federated Learning (PDFL 2021)Workshop on Graph Embedding and Mining (GEM 2021)Workshop on Machine Learning for Irregular Time-series (ML4ITS 2021)Workshop on IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2021)Workshop on eXplainable Knowledge Discovery in Data Mining (XKDD 2021)Workshop on Bias and Fairness in AI (BIAS 2021)Workshop on Workshop on Active Inference (IWAI 2021)Workshop on Machine Learning for Cybersecurity (MLCS 2021)Workshop on Machine Learning in Software Engineering (MLiSE 2021)Workshop on MIning Data for financial applications (MIDAS 2021)Sixth Workshop on Data Science for Social Good (SoGood 2021)Workshop on Machine Learning for Pharma and Healthcare Applications (PharML 2021)Second Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning (EDML 2020)Workshop on Machine Learning for Buildings Energy Management (MLBEM 2021) |
data science for social good fellowship: Data Cultures in Higher Education Juliana E. Raffaghelli, Albert Sangrà, 2023-03-07 This collection focuses on the role of higher education institutions concerning datafication as a complex phenomenon. It explores how the universities can develop data literac(ies) shaping tomorrow skills and “formae mentis” to face the most deleterious effects of datafication, but also to engage in creative and constructive ways with data. Notably, the book spots data practices within the two most relevant sides of academics’ professional practice, namely, research and teaching. Hence, the collection seeks to reflect on faculty’s professional learning about data infrastructures and practices. The book draws on a range of studies covering the higher education response to the several facets of data in society, from data surveillance and the algorithmic control of human behaviour to empowerment through the use of open data. The research reported ranges from literature overviews to multi-case and in-depth case studies illustrating institutional and educational responses to different problems connected to data. The ultimate intention is to provide conceptual bases and practical examples relating to universities’ faculty development policies to overcome data practices and discourses' fragmentation and contradictions: in a nutshell, to build “fair data cultures” in higher education. |
data science for social good fellowship: Affective Computing for Social Good Muskan Garg, |
data science for social good fellowship: Business and Consumer Analytics: New Ideas Pablo Moscato, Natalie Jane de Vries, 2019-05-30 This two-volume handbook presents a collection of novel methodologies with applications and illustrative examples in the areas of data-driven computational social sciences. Throughout this handbook, the focus is kept specifically on business and consumer-oriented applications with interesting sections ranging from clustering and network analysis, meta-analytics, memetic algorithms, machine learning, recommender systems methodologies, parallel pattern mining and data mining to specific applications in market segmentation, travel, fashion or entertainment analytics. A must-read for anyone in data-analytics, marketing, behavior modelling and computational social science, interested in the latest applications of new computer science methodologies. The chapters are contributed by leading experts in the associated fields.The chapters cover technical aspects at different levels, some of which are introductory and could be used for teaching. Some chapters aim at building a common understanding of the methodologies and recent application areas including the introduction of new theoretical results in the complexity of core problems. Business and marketing professionals may use the book to familiarize themselves with some important foundations of data science. The work is a good starting point to establish an open dialogue of communication between professionals and researchers from different fields. Together, the two volumes present a number of different new directions in Business and Customer Analytics with an emphasis in personalization of services, the development of new mathematical models and new algorithms, heuristics and metaheuristics applied to the challenging problems in the field. Sections of the book have introductory material to more specific and advanced themes in some of the chapters, allowing the volumes to be used as an advanced textbook. Clustering, Proximity Graphs, Pattern Mining, Frequent Itemset Mining, Feature Engineering, Network and Community Detection, Network-based Recommending Systems and Visualization, are some of the topics in the first volume. Techniques on Memetic Algorithms and their applications to Business Analytics and Data Science are surveyed in the second volume; applications in Team Orienteering, Competitive Facility-location, and Visualization of Products and Consumers are also discussed. The second volume also includes an introduction to Meta-Analytics, and to the application areas of Fashion and Travel Analytics. Overall, the two-volume set helps to describe some fundamentals, acts as a bridge between different disciplines, and presents important results in a rapidly moving field combining powerful optimization techniques allied to new mathematical models critical for personalization of services. Academics and professionals working in the area of business anyalytics, data science, operations research and marketing will find this handbook valuable as a reference. Students studying these fields will find this handbook useful and helpful as a secondary textbook. |
data science for social good fellowship: The Dragonfly Effect Jennifer Aaker, Andy Smith, 2010-09-28 Proven strategies for harnessing the power of social media to drive social change Many books teach the mechanics of using Facebook, Twitter, and YouTube to compete in business. But no book addresses how to harness the incredible power of social media to make a difference. The Dragonfly Effect shows you how to tap social media and consumer psychological insights to achieve a single, concrete goal. Named for the only insect that is able to move in any direction when its four wings are working in concert, this book Reveals the four wings of the Dragonfly Effect-and how they work together to produce colossal results Features original case studies of global organizations like the Gap, Starbucks, Kiva, Nike, eBay, Facebook; and start-ups like Groupon and COOKPAD, showing how they achieve social good and customer loyalty Leverage the power of design thinking and psychological research with practical strategies Reveals how everyday people achieve unprecedented results-whether finding an almost impossible bone marrow match for a friend, raising millions for cancer research, or electing the current president of the United States The Dragonfly Effect shows that you don't need money or power to inspire seismic change. |
data science for social good fellowship: The Smart Enough City Ben Green, 2019-04-09 Why technology is not an end in itself, and how cities can be “smart enough,” using technology to promote democracy and equity. Smart cities, where technology is used to solve every problem, are hailed as futuristic urban utopias. We are promised that apps, algorithms, and artificial intelligence will relieve congestion, restore democracy, prevent crime, and improve public services. In The Smart Enough City, Ben Green warns against seeing the city only through the lens of technology; taking an exclusively technical view of urban life will lead to cities that appear smart but under the surface are rife with injustice and inequality. He proposes instead that cities strive to be “smart enough”: to embrace technology as a powerful tool when used in conjunction with other forms of social change—but not to value technology as an end in itself. In a technology-centric smart city, self-driving cars have the run of downtown and force out pedestrians, civic engagement is limited to requesting services through an app, police use algorithms to justify and perpetuate racist practices, and governments and private companies surveil public space to control behavior. Green describes smart city efforts gone wrong but also smart enough alternatives, attainable with the help of technology but not reducible to technology: a livable city, a democratic city, a just city, a responsible city, and an innovative city. By recognizing the complexity of urban life rather than merely seeing the city as something to optimize, these Smart Enough Cities successfully incorporate technology into a holistic vision of justice and equity. |
data science for social good fellowship: Identity Orchestration David Wall Rice, 2022-06-21 Identity Orchestration illustrates the importance of identity balance in behavioral health as seen through a personality psychology lens. The contributors to this collection deeply engage the self and psychological strength by examining race, gender, class, and context with narratives that highlight the asset-based constructs of identity. |
data science for social good fellowship: Data Feminism Catherine D'Ignazio, Lauren F. Klein, 2020-03-31 A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought. Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.” Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed. |
data science for social good fellowship: Modern Iran Dialectics Michael E. Bonine, 1981-06-30 |
data science for social good fellowship: Sources of Information Concerning the Operation of the Eighteenth Amendment Social Science Research Council (U.S.), 1928 |
data science for social good fellowship: Socially Responsible Ai: Theories And Practices Lu Cheng, Huan Liu, 2023-02-13 In the current era, people and society have grown increasingly reliant on artificial intelligence (AI) technologies. AI has the potential to drive us towards a future in which all of humanity flourishes. It also comes with substantial risks for oppression and calamity. In response, researchers and organizations have been working to publish principles and develop AI regulations for the responsible use of AI in consequential application domains. However, these theoretically formulated principles and regulations also need to be turned into actionable algorithms to materialize AI for good.This book introduces a unified perspective of Socially Responsible AI to help bridge conceptual AI principles to responsible AI practice. It begins with an interdisciplinary definition of socially responsible AI and the AI responsibility pyramid. Existing efforts seeking to materialize the mainstream responsible AI principles are then presented. The book also discusses how to leverage advanced AI techniques to address the challenging societal issues through Protecting, Informing, and Preventing, and concludes with open problems and challenges.This book serves as a convenient entry point for researchers, practitioners, and students to understand the problems and challenges of socially responsible AI, and to identify how their areas of expertise can contribute to making AI socially responsible. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …