Advertisement
data science in entertainment industry: Entertainment Science Thorsten Hennig-Thurau, Mark B. Houston, 2018-08-01 The entertainment industry has long been dominated by legendary screenwriter William Goldman’s “Nobody-Knows-Anything” mantra, which argues that success is the result of managerial intuition and instinct. This book builds the case that combining such intuition with data analytics and rigorous scholarly knowledge provides a source of sustainable competitive advantage – the same recipe for success that is behind the rise of firms such as Netflix and Spotify, but has also fueled Disney’s recent success. Unlocking a large repertoire of scientific studies by business scholars and entertainment economists, the authors identify essential factors, mechanisms, and methods that help a new entertainment product succeed. The book thus offers a timely alternative to “Nobody-Knows” decision-making in the digital era: while coupling a good idea with smart data analytics and entertainment theory cannot guarantee a hit, it systematically and substantially increases the probability of success in the entertainment industry. Entertainment Science is poised to inspire fresh new thinking among managers, students of entertainment, and scholars alike. Thorsten Hennig-Thurau and Mark B. Houston – two of our finest scholars in the area of entertainment marketing – have produced a definitive research-based compendium that cuts across various branches of the arts to explain the phenomena that provide consumption experiences to capture the hearts and minds of audiences. Morris B. Holbrook, W. T. Dillard Professor Emeritus of Marketing, Columbia University Entertainment Science is a must-read for everyone working in the entertainment industry today, where the impact of digital and the use of big data can’t be ignored anymore. Hennig-Thurau and Houston are the scientific frontrunners of knowledge that the industry urgently needs. Michael Kölmel, media entrepreneur and Honorary Professor of Media Economics at University of Leipzig Entertainment Science’s winning combination of creativity, theory, and data analytics offers managers in the creative industries and beyond a novel, compelling, and comprehensive approach to support their decision-making. This ground-breaking book marks the dawn of a new Golden Age of fruitful conversation between entertainment scholars, managers, and artists. Allègre Hadida, Associate Professor in Strategy, University of Cambridge |
data science in entertainment industry: New Horizons for a Data-Driven Economy José María Cavanillas, Edward Curry, Wolfgang Wahlster, 2016-04-04 In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment. |
data science in entertainment industry: Streaming, Sharing, Stealing Michael D. Smith, Rahul Telang, 2017-08-25 How big data is transforming the creative industries, and how those industries can use lessons from Netflix, Amazon, and Apple to fight back. “[The authors explain] gently yet firmly exactly how the internet threatens established ways and what can and cannot be done about it. Their book should be required for anyone who wishes to believe that nothing much has changed.” —The Wall Street Journal “Packed with examples, from the nimble-footed who reacted quickly to adapt their businesses, to laggards who lost empires.” —Financial Times Traditional network television programming has always followed the same script: executives approve a pilot, order a trial number of episodes, and broadcast them, expecting viewers to watch a given show on their television sets at the same time every week. But then came Netflix's House of Cards. Netflix gauged the show's potential from data it had gathered about subscribers' preferences, ordered two seasons without seeing a pilot, and uploaded the first thirteen episodes all at once for viewers to watch whenever they wanted on the devices of their choice. In this book, Michael Smith and Rahul Telang, experts on entertainment analytics, show how the success of House of Cards upended the film and TV industries—and how companies like Amazon and Apple are changing the rules in other entertainment industries, notably publishing and music. We're living through a period of unprecedented technological disruption in the entertainment industries. Just about everything is affected: pricing, production, distribution, piracy. Smith and Telang discuss niche products and the long tail, product differentiation, price discrimination, and incentives for users not to steal content. To survive and succeed, businesses have to adapt rapidly and creatively. Smith and Telang explain how. How can companies discover who their customers are, what they want, and how much they are willing to pay for it? Data. The entertainment industries, must learn to play a little “moneyball.” The bottom line: follow the data. |
data science in entertainment industry: The Oxford Handbook of the Science of Science Communication Kathleen Hall Jamieson, Dan M. Kahan, Dietram Scheufele, 2017 On topics from genetic engineering and mad cow disease to vaccination and climate change, this Handbook draws on the insights of 57 leading science of science communication scholars who explore what social scientists know about how citizens come to understand and act on what is known by science. |
data science in entertainment industry: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians. |
data science in entertainment industry: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates |
data science in entertainment industry: Information Systems and Management in Media and Entertainment Industries Artur Lugmayr, Emilija Stojmenova, Katarina Stanoevska, Robert Wellington, 2017-01-03 This book defines an agenda for research in information management and systems for media and entertainment industries. It highlights their particular needs in production, distribution, and consumption. Chapters are written by practitioners and researchers from around the world, who examine business information management and systems in the larger context of media and entertainment industries. Human, management, technological, and content creation aspects are covered in order to provide a unique viewpoint. With great interdisciplinary scope, the book provides a roadmap of research challenges and a structured approach for future development across areas such as social media, eCommerce, and eBusiness. Chapters address the tremendous challenges in organization, leadership, customer behavior, and technology that face the entertainment and media industries every day, including the transformation of the analog media world into its digital counterpart. Professionals or researchers involved with IT systems management, information policies, technology development or content creation will find this book an essential resource. It is also a valuable tool for academics or advanced-level students studying digital media or information systems. |
data science in entertainment industry: Data Science Pallavi Vijay Chavan, Parikshit N Mahalle, Ramchandra Mangrulkar, Idongesit Williams, 2022-08-15 This book covers the topic of data science in a comprehensive manner and synthesizes both fundamental and advanced topics of a research area that has now reached its maturity. The book starts with the basic concepts of data science. It highlights the types of data and their use and importance, followed by a discussion on a wide range of applications of data science and widely used techniques in data science. Key Features • Provides an internationally respected collection of scientific research methods, technologies and applications in the area of data science. • Presents predictive outcomes by applying data science techniques to real-life applications. • Provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. • Gives the reader a variety of intelligent applications that can be designed using data science and its allied fields. The book is aimed primarily at advanced undergraduates and graduates studying machine learning and data science. Researchers and professionals will also find this book useful. |
data science in entertainment industry: Entertainment Industry Economics Harold L. Vogel, 2007-04-23 In this newly revised book, Harold L. Vogel examines the business economics of the major entertainment enterprises: movies, music, television programming, broadcasting, cable, casino gambling and wagering, publishing, performing arts, sports, theme parks, and toys and games. The seventh edition has been further revised and broadened and differs from its predecessors by restructuring and repositioning the previous Internet chapter, including new material on the economics of networks and advertising, adding a new section on policy implications, and further expanding the section on recent theoretical work pertaining to box-office behaviour. The result is a comprehensive up-to-date reference guide on the economics, financing, production, and marketing of entertainment in the United States and overseas. Investors, business executives, accountants, lawyers, arts administrators, and general readers will find that the book offers an invaluable guide to how entertainment industries operate. |
data science in entertainment industry: Research Anthology on Reliability and Safety in Aviation Systems, Spacecraft, and Air Transport Management Association, Information Resources, 2020-09-24 As with other transportation methods, safety issues in aircraft can result in a total loss of life. Recently, the air transport industry has come under immense scrutiny after several deaths occurred due to aircraft design and airlines that allowed improperly inspected aircraft to fly. Spacecraft too have found errors in system software that could lead to catastrophic failure. It is imperative that the aviation and aerospace industries continue to revise and refine safety protocols from the construction and design of aircraft, to secure and improve aviation systems, and to test and inspect aircraft. The Research Anthology on Reliability and Safety in Aviation Systems, Spacecraft, and Air Transport is a vital reference source that examines the latest scholarly material on the use of adaptive and assistive technologies in aviation to establish clear guidelines for the design and implementation of such technologies to better serve the needs of both military and civilian pilots. It also covers new information technology use in aviation systems to streamline the cybersecurity, decision making, planning, and design processes within the aviation industry. Highlighting a range of topics such as air navigation systems, computer simulation, and airline operations, this multi-volume book is ideally designed for pilots, scientists, engineers, aviation operators, air traffic controllers, air crash investigators, teachers, academicians, researchers, and students. |
data science in entertainment industry: Data Science & Business Analytics Sneha Kumari, K. K. Tripathy, Vidya Kumbhar, 2020-12-04 Data Science & Business Analytics explores the application of big data and business analytics by academics, researchers, industrial experts, policy makers and practitioners, helping the reader to understand how big data can be efficiently utilized in better managerial applications. |
data science in entertainment industry: Game Data Science Magy Seif El-Nasr, Truong-Huy D. Nguyen, Alessandro Canossa, Anders Drachen, 2021-09-30 Game data science, defined as the practice of deriving insights from game data, has created a revolution in the multibillion-dollar games industry - informing and enhancing production, design, and development processes. Almost all game companies and academics have now adopted some type of game data science, every tool utilized by game developers allows collecting data from games, yet there has been no definitive resource for academics and professionals in this rapidly developing sector until now. Games Data Science delivers an excellent introduction to this new domain and provides the definitive guide to methods and practices of computer science, analytics, and data science as applied to video games. It is the ideal resource for academic students and professional learners seeking to understand how data science is used within the game development and production cycle, as well as within the interdisciplinary field of games research. Organized into chapters that integrate laboratory and game data examples, this book provides a unique resource to train and educate both industry professionals and academics about the use of game data science, with practical exercises and examples on how such processes are implemented and used in academia and industry, interweaving theoretical learning with practical application throughout. |
data science in entertainment industry: Python Data Science Handbook Jake VanderPlas, 2016-11-21 For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms |
data science in entertainment industry: Entertainment Industry Economics Harold L. Vogel, 2020-07-23 Already among the most important sectors of the US economy, the entertainment and media industries are continuing to grow worldwide. Fully updated, the tenth edition of Entertainment Industry Economics is the definitive reference on the economics of film, music, television, advertising, broadcasting, cable, casinos, publishing, arts and culture, performing arts, toys and games, sports, and theme parks. Its synthesis of a vast amount of data provides an up-to-date guide to the economics, financing, accounting, production, marketing, and history of these sectors in the United States and countries across the globe. This edition offers new material on streaming services, the relationship between demographics and entertainment spending, electromagnetic spectrum for broadcasters, and revised FASB accounting rules for film and television. Financial analysts and investors, economists, industry executives, accountants, lawyers, regulators, and journalists, as well as students preparing to join these professionals will benefit from this invaluable source. |
data science in entertainment industry: Risk in the Film Business Michael Franklin, 2022-07-25 This book explores the complex, multifaceted and contested subject of risk in the film business. How risk is understood and managed has a substantial impact upon which films are financed, produced and seen. Founded on substantial original research accessing the highest level of industry practitioners, this book examines the intertwined activity of independents, large media companies including major studios, the international marketplace, and related audio-visual sectors such as high-end television. The book shows how risk is generally framed, or even intuited, rather than calculated, and that this process occurs across a sliding scale of formality. This work goes beyond broad creative industries characterisations of a risky sector and concentrations on Box Office return modelling, to provide a missing middle. This means a coherent analytic coverage of business organisation and project construction to address the complex practicalities that mobilise strategic operations in relation to risk, often in unseen business-to-business contexts. Informed by economic sociology’s concepts addressing market assemblage and valuation, alongside applications of science and technology studies to media and communications, the book respects both the powerful roles of social and institutional actors, and affordances of new technologies in dealing with the persistent known unknown – the audience. Examining a persistent business issue in a new way, this book analyses top level industry practice through established mechanisms, and innovations like data analytics. The result is a book that will be essential reading for scholars with an interest in the film business as well as risk management more broadly. |
data science in entertainment industry: The Data Science Design Manual Steven S. Skiena, 2017-07-01 This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com) |
data science in entertainment industry: Entertainment Media and Communication Nicholas David Bowman, 2024-10-21 Although not considered a formal area of study, scholarship on the uses, content, and effects of entertaining media has been central to communication studies and related fields for more than a century. The serious study of entertainment seems paradoxical, as we presume entertainment to be the “lighter side” of our daily lives. Yet as revealed in this volume, entertainment media serve as cultural artifacts that shape our understandings of various peoples and publics in ways that invite deeper, immersive, and increasingly interactive engagement. On this backdrop, Entertainment Media and Communication serves as a reference guide for canonical and foundational research into media entertainment and a collection of emerging and updated theories and models core to the study of media entertainment in the 21st century. Across more than forty chapters and with a diverse and inclusive list of authors, this volume provides a broad-yet-nuanced view into entertainment media and communication scholarship. The contributors explore its foundations, define and extend key concepts and theories through myriad lenses, discuss unique considerations of digital media, and divine future paths for scholarly inquiry. |
data science in entertainment industry: Research Anthology on Big Data Analytics, Architectures, and Applications Management Association, Information Resources, 2021-09-24 Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians. |
data science in entertainment industry: Emerging Trends in Data Science Machine Learning, IoT and Artificial Intelligence Shaweta Narula, Vivek Narula, 2024-03-11 Shaweta Narula, Assistant Professor, Department of Electronics and Communication, Nutan College of Engineering and Research, Talegaon Dabhade, Pune Maharashtra,India. Vivek Narula, Quality Manager, Multinational Company, Automotive Industry, Pune, Maharashtra, India. |
data science in entertainment industry: Machine Learning and Data Science Prateek Agrawal, Charu Gupta, Anand Sharma, Vishu Madaan, Nisheeth Joshi, 2022-08-09 MACHINE LEARNING AND DATA SCIENCE Written and edited by a team of experts in the field, this collection of papers reflects the most up-to-date and comprehensive current state of machine learning and data science for industry, government, and academia. Machine learning (ML) and data science (DS) are very active topics with an extensive scope, both in terms of theory and applications. They have been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social science, and lifestyle. Simultaneously, their applications provide important challenges that can often be addressed only with innovative machine learning and data science algorithms. These algorithms encompass the larger areas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. They also tackle related new scientific challenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and visualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation. |
data science in entertainment industry: Cracking the Data Science Interview Leondra R. Gonzalez, Aaren Stubberfield, 2024-02-29 Rise above the competition and excel in your next interview with this one-stop guide to Python, SQL, version control, statistics, machine learning, and much more Key Features Acquire highly sought-after skills of the trade, including Python, SQL, statistics, and machine learning Gain the confidence to explain complex statistical, machine learning, and deep learning theory Extend your expertise beyond model development with version control, shell scripting, and model deployment fundamentals Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe data science job market is saturated with professionals of all backgrounds, including academics, researchers, bootcampers, and Massive Open Online Course (MOOC) graduates. This poses a challenge for companies seeking the best person to fill their roles. At the heart of this selection process is the data science interview, a crucial juncture that determines the best fit for both the candidate and the company. Cracking the Data Science Interview provides expert guidance on approaching the interview process with full preparation and confidence. Starting with an introduction to the modern data science landscape, you’ll find tips on job hunting, resume writing, and creating a top-notch portfolio. You’ll then advance to topics such as Python, SQL databases, Git, and productivity with shell scripting and Bash. Building on this foundation, you'll delve into the fundamentals of statistics, laying the groundwork for pre-modeling concepts, machine learning, deep learning, and generative AI. The book concludes by offering insights into how best to prepare for the intensive data science interview. By the end of this interview guide, you’ll have gained the confidence, business acumen, and technical skills required to distinguish yourself within this competitive landscape and land your next data science job.What you will learn Explore data science trends, job demands, and potential career paths Secure interviews with industry-standard resume and portfolio tips Practice data manipulation with Python and SQL Learn about supervised and unsupervised machine learning models Master deep learning components such as backpropagation and activation functions Enhance your productivity by implementing code versioning through Git Streamline workflows using shell scripting for increased efficiency Who this book is for Whether you're a seasoned professional who needs to brush up on technical skills or a beginner looking to enter the dynamic data science industry, this book is for you. To get the most out of this book, basic knowledge of Python, SQL, and statistics is necessary. However, anyone familiar with other analytical languages, such as R, will also find value in this resource as it helps you revisit critical data science concepts like SQL, Git, statistics, and deep learning, guiding you to crack through data science interviews. |
data science in entertainment industry: Machine Intelligence and Data Science Applications Vaclav Skala, T. P. Singh, Tanupriya Choudhury, Ravi Tomar, Md. Abul Bashar, 2022-08-01 This book is a compilation of peer reviewed papers presented at International Conference on Machine Intelligence and Data Science Applications (MIDAS 2021), held in Comilla University, Cumilla, Bangladesh during 26 – 27 December 2021. The book covers applications in various fields like image processing, natural language processing, computer vision, sentiment analysis, speech and gesture analysis, etc. It also includes interdisciplinary applications like legal, healthcare, smart society, cyber physical system and smart agriculture, etc. The book is a good reference for computer science engineers, lecturers/researchers in machine intelligence discipline and engineering graduates. |
data science in entertainment industry: Sports Analytics and Data Science Thomas W. Miller, 2015-11-18 This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. This up-to-the-minute reference will help you master all three facets of sports analytics — and use it to win! Sports Analytics and Data Science is the most accessible and practical guide to sports analytics for everyone who cares about winning and everyone who is interested in data science. You’ll discover how successful sports analytics blends business and sports savvy, modern information technology, and sophisticated modeling techniques. You’ll master the discipline through realistic sports vignettes and intuitive data visualizations–not complex math. Every chapter focuses on one key sports analytics application. Miller guides you through assessing players and teams, predicting scores and making game-day decisions, crafting brands and marketing messages, increasing revenue and profitability, and much more. Step by step, you’ll learn how analysts transform raw data and analytical models into wins: both on the field and in any sports business. |
data science in entertainment industry: Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry Chkoniya, Valentina, 2021-06-25 The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students. |
data science in entertainment industry: Mastering Python 9.95, 2023-09-06 Cybellium Ltd is dedicated to empowering individuals and organizations with the knowledge and skills they need to navigate the ever-evolving computer science landscape securely and learn only the latest information available on any subject in the category of computer science including: - Information Technology (IT) - Cyber Security - Information Security - Big Data - Artificial Intelligence (AI) - Engineering - Robotics - Standards and compliance Our mission is to be at the forefront of computer science education, offering a wide and comprehensive range of resources, including books, courses, classes and training programs, tailored to meet the diverse needs of any subject in computer science. Visit https://www.cybellium.com for more books. |
data science in entertainment industry: Data Science in Context Alfred Z. Spector, Peter Norvig, Chris Wiggins, Jeannette M. Wing, 2022-10-20 Four leading experts convey the promise of data science and examine challenges in achieving its benefits and mitigating some harms. |
data science in entertainment industry: Artificial Intelligence, Data Science and Applications Yousef Farhaoui, |
data science in entertainment industry: Data Science for Decision Makers Jon Howells, 2024-07-26 Bridge the gap between business and data science by learning how to interpret machine learning and AI models, manage data teams, and achieve impactful results Key Features Master the concepts of statistics and ML to interpret models and guide decisions Identify valuable AI use cases and manage data science projects from start to finish Empower top data science teams to solve complex problems and build AI products Purchase of the print Kindle book includes a free PDF eBook Book DescriptionAs data science and artificial intelligence (AI) become prevalent across industries, executives without formal education in statistics and machine learning, as well as data scientists moving into leadership roles, must learn how to make informed decisions about complex models and manage data teams. This book will elevate your leadership skills by guiding you through the core concepts of data science and AI. This comprehensive guide is designed to bridge the gap between business needs and technical solutions, empowering you to make informed decisions and drive measurable value within your organization. Through practical examples and clear explanations, you'll learn how to collect and analyze structured and unstructured data, build a strong foundation in statistics and machine learning, and evaluate models confidently. By recognizing common pitfalls and valuable use cases, you'll plan data science projects effectively, from the ground up to completion. Beyond technical aspects, this book provides tools to recruit top talent, manage high-performing teams, and stay up to date with industry advancements. By the end of this book, you’ll be able to characterize the data within your organization and frame business problems as data science problems.What you will learn Discover how to interpret common statistical quantities and make data-driven decisions Explore ML concepts as well as techniques in supervised, unsupervised, and reinforcement learning Find out how to evaluate statistical and machine learning models Understand the data science lifecycle, from development to monitoring of models in production Know when to use ML, statistical modeling, or traditional BI methods Manage data teams and data science projects effectively Who this book is for This book is designed for executives who want to understand and apply data science methods to enhance decision-making. It is also for individuals who work with or manage data scientists and machine learning engineers, such as chief data officers (CDOs), data science managers, and technical project managers. |
data science in entertainment industry: Proceedings of International Conference on Data Analytics and Insights, ICDAI 2023 Nabendu Chaki, Nilanjana Dutta Roy, Papiya Debnath, Khalid Saeed, 2023-07-24 The book is a collection of peer-reviewed best selected research papers presented at the International Conference on Data Analytics and Insights (ICDAI 2023), organized by Techno International, Kolkata, India, during May 11–13, 2023. The book covers important topics like sensor and network data analytics and insights; big data analytics and insights; biological and biomedical data analysis and insights; optimization techniques, time series analysis and forecasting; power and energy systems data analytics and insights; civil and environmental data analytics and insights; and industry and applications. |
data science in entertainment industry: Data Engineering and Data Science Kukatlapalli Pradeep Kumar, Aynur Unal, Vinay Jha Pillai, Hari Murthy, M. Niranjanamurthy, 2023-08-29 DATA ENGINEERING and DATA SCIENCE Written and edited by one of the most prolific and well-known experts in the field and his team, this exciting new volume is the “one-stop shop” for the concepts and applications of data science and engineering for data scientists across many industries. The field of data science is incredibly broad, encompassing everything from cleaning data to deploying predictive models. However, it is rare for any single data scientist to be working across the spectrum day to day. Data scientists usually focus on a few areas and are complemented by a team of other scientists and analysts. Data engineering is also a broad field, but any individual data engineer doesn’t need to know the whole spectrum of skills. Data engineering is the aspect of data science that focuses on practical applications of data collection and analysis. For all the work that data scientists do to answer questions using large sets of information, there have to be mechanisms for collecting and validating that information. In this exciting new volume, the team of editors and contributors sketch the broad outlines of data engineering, then walk through more specific descriptions that illustrate specific data engineering roles. Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. This book brings together machine learning, engineering mathematics, and mathematical physics to integrate modeling and control of dynamical systems with modern methods in data science. It highlights many of the recent advances in scientific computing that enable data-driven methods to be applied to a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy. Whether for the veteran engineer or scientist working in the field or laboratory, or the student or academic, this is a must-have for any library. |
data science in entertainment industry: Handbook of State Aid for Film Paul Clemens Murschetz, Roland Teichmann, Matthias Karmasin, 2018-04-01 This book is an analysis of the specificities of public film funding on an international scale. It shows how public funding schemes add value to film-making and other audio-visual productions and provides a comprehensive analysis of today’s global challenges in the film industry such as industry change, digital transformation, and shifting audience tastes. Based on insights from fields such as cultural economics, media economics, media management and media governance studies, the authors illustrate how public spending shapes the financial fitness of national and international film industries. This highly informative book will help both scholars and practitioners in the film industry to understand the complexity of issues and the requirements necessary to preserve the social benefits of film as an important cultural good. |
data science in entertainment industry: Confident Data Skills Kirill Eremenko, 2018-01-03 Data has dramatically changed how our world works. From entertainment to politics, from technology to advertising and from science to the business world, understanding and using data is now one of the most transferable and transferable skills out there. Learning how to work with data may seem intimidating or difficult but with Confident Data Skills you will be able to master the fundamentals and supercharge your professional abilities. This essential book covers data mining, preparing data, analysing data, communicating data, financial modelling, visualizing insights and presenting data through film making and dynamic simulations. In-depth international case studies from a wide range of organizations, including Netflix, LinkedIn, Goodreads, Deep Blue, Alpha Go and Mike's Hard Lemonade Co. show successful data techniques in practice and inspire you to turn knowledge into innovation. Confident Data Skills also provides insightful guidance on how you can use data skills to enhance your employability and improve how your industry or company works through your data skills. Expert author and instructor, Kirill Eremenko, is committed to making the complex simple and inspiring you to have the confidence to develop an understanding, adeptness and love of data. |
data science in entertainment industry: An Introduction to the Entertainment Industry Andi Stein, Beth Bingham Evans, 2009 Whether it's a favorite television show, an artist at the top of the music charts, a best-selling book, or a hometown sports team, we love entertainment. It's big business and in this accessible introduction, Andi Stein and Beth Bingham Evans give readers a glimpse inside the industry, to better understand how each segment operates and the challenges and trends it faces. Each chapter addresses a different segment of the entertainment industry including: - Film - Television - Radio - Theatre - Music - Travel/Tourism - Sports The book is designed as an introductory text for entertainment courses and as an overview of the industry for those looking to pursue careers in the field of entertainment. A list of resources is provided at the end of each chapter. |
data science in entertainment industry: WIPO Magazine, Issue 4/2022 (December) World Intellectual Property Organization, 2022-12-15 The WIPO Magazine explores intellectual property, creativity and innovation in action across the world. |
data science in entertainment industry: Advanced Mathematical Applications in Data Science Biswadip Basu Mallik, Kirti Verma, Rahul Kar, Ashok Kumar Shaw, 2023-08-24 Advanced Mathematical Applications in Data Science comprehensively explores the crucial role mathematics plays in the field of data science. Each chapter is contributed by scientists, researchers, and academicians. The 13 chapters cover a range of mathematical concepts utilized in data science, enabling readers to understand the intricate connection between mathematics and data analysis. The book covers diverse topics, including, machine learning models, the Kalman filter, data modeling, artificial neural networks, clustering techniques, and more, showcasing the application of advanced mathematical tools for effective data processing and analysis. With a strong emphasis on real-world applications, the book offers a deeper understanding of the foundational principles behind data analysis and its numerous interdisciplinary applications. This reference is an invaluable resource for graduate students, researchers, academicians, and learners pursuing a research career in mathematical computing or completing advanced data science courses. Key Features: Comprehensive coverage of advanced mathematical concepts and techniques in data science Contributions from established scientists, researchers, and academicians Real-world case studies and practical applications of mathematical methods Focus on diverse areas, such as image classification, carbon emission assessment, customer churn prediction, and healthcare data analysis In-depth exploration of data science's connection with mathematics, computer science, and artificial intelligence Scholarly references for each chapter Suitable for readers with high school-level mathematical knowledge, making it accessible to a broad audience in academia and industry. |
data science in entertainment industry: Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making Cengiz Kahraman, Selcuk Cebi, Sezi Cevik Onar, Basar Oztaysi, A. Cagri Tolga, Irem Ucal Sari, 2019-07-05 This book includes the proceedings of the Intelligent and Fuzzy Techniques INFUS 2019 Conference, held in Istanbul, Turkey, on July 23–25, 2019. Big data analytics refers to the strategy of analyzing large volumes of data, or big data, gathered from a wide variety of sources, including social networks, videos, digital images, sensors, and sales transaction records. Big data analytics allows data scientists and various other users to evaluate large volumes of transaction data and other data sources that traditional business systems would be unable to tackle. Data-driven and knowledge-driven approaches and techniques have been widely used in intelligent decision-making, and they are increasingly attracting attention due to their importance and effectiveness in addressing uncertainty and incompleteness. INFUS 2019 focused on intelligent and fuzzy systems with applications in big data analytics and decision-making, providing an international forum that brought together those actively involved in areas of interest to data science and knowledge engineering. These proceeding feature about 150 peer-reviewed papers from countries such as China, Iran, Turkey, Malaysia, India, USA, Spain, France, Poland, Mexico, Bulgaria, Algeria, Pakistan, Australia, Lebanon, and Czech Republic. |
data science in entertainment industry: Cognitive Science, Computational Intelligence, and Data Analytics Vikas Khare, Sanjeet Kumar Dwivedi, Monica Bhatia, 2024-06-06 Cognitive Science, Computational Intelligence, and Data Analytics: Methods and Applications with Python introduces readers to the foundational concepts of data analysis, cognitive science, and computational intelligence, including AI and Machine Learning. The book's focus is on fundamental ideas, procedures, and computational intelligence tools that can be applied to a wide range of data analysis approaches, with applications that include mathematical programming, evolutionary simulation, machine learning, and logic-based models. It offers readers the fundamental and practical aspects of cognitive science and data analysis, exploring data analytics in terms of description, evolution, and applicability in real-life problems.The authors cover the history and evolution of cognitive analytics, methodological concerns in philosophy, syntax and semantics, understanding of generative linguistics, theory of memory and processing theory, structured and unstructured data, qualitative and quantitative data, measurement of variables, nominal, ordinals, intervals, and ratio scale data. The content in this book is tailored to the reader's needs in terms of both type and fundamentals, including coverage of multivariate analysis, CRISP methodology and SEMMA methodology. Each chapter provides practical, hands-on learning with real-world applications, including case studies and Python programs related to the key concepts being presented. - Demystifies the theory of data analytics using a step-by-step approach - Covers the intersection of cognitive science, computational intelligence, and data analytics by providing examples and case studies with applied algorithms, mathematics, and Python programming code - Introduces foundational data analytics techniques such as CRISP-DM, SEMMA, and Object Detection Models in the context of computational intelligence methods and tools - Covers key concepts of multivariate and cognitive data analytics such as factor analytics, principal component analytics, linear regression analysis, logistic regression analysis, and value chain applications |
data science in entertainment industry: A Hands-on Introduction to Big Data Analytics Funmi Obembe, Ofer Engel, 2024-02-23 This practical textbook offers a hands-on introduction to big data analytics, helping you to develop the skills required to hit the ground running as a data professional. It complements theoretical foundations with an emphasis on the application of big data analytics, illustrated by real-life examples and datasets. Containing comprehensive coverage of all the key topics in this area, this book uses open-source technologies and examples in Python and Apache Spark. Learning features include: - Ethics by Design encourages you to consider data ethics at every stage. - Industry Insights facilitate a deeper understanding of the link between what you are studying and how it is applied in industry. - Datasets, questions, and exercises give you the opportunity to apply your learning. Dr Funmi Obembe is the Head of Technology at the Faculty of Arts, Science and Technology, University of Northampton. Dr Ofer Engel is a Data Scientist at the University of Groningen. |
data science in entertainment industry: Concise Survey of Computer Methods Peter Naur, 1974 |
data science in entertainment industry: Entertainment Management Stuart Moss, Ben Walmsley, 2014-06-16 Following on from The Entertainment Industry: An Introduction, Entertainment Management takes the next step in the development of entertainment as a practice and as an academic subject. Aimed at higher level undergraduates, the book discusses best practices in the entertainment industry, profiling a different discipline per chapter, each one a branch of entertainment that offers employment opportunities within the sector. Fields include marketing, P.R., the media, live events, artist management, arts and culture, consultancy and visitor attractions. The book aims to reflect the knowledge students will need for real world of entertainment management such as technical standards, business management, people management, economic aspects and legal issues. Each chapter discusses the background of the discipline, best practice management principles, issues in the wider environment, case studies of real organisations and future trends. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with minimum time …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, released in …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process from …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical barriers …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be collected, …