Data Science In Insurance Companies



  data science in insurance companies: Analytics for Insurance Tony Boobier, 2016-10-10 The business guide to Big Data in insurance, with practical application insight Big Data and Analytics for Insurers is the industry-specific guide to creating operational effectiveness, managing risk, improving financials, and retaining customers. Written from a non-IT perspective, this book focusses less on the architecture and technical details, instead providing practical guidance on translating analytics into target delivery. The discussion examines implementation, interpretation, and application to show you what Big Data can do for your business, with insights and examples targeted specifically to the insurance industry. From fraud analytics in claims management, to customer analytics, to risk analytics in Solvency 2, comprehensive coverage presented in accessible language makes this guide an invaluable resource for any insurance professional. The insurance industry is heavily dependent on data, and the advent of Big Data and analytics represents a major advance with tremendous potential – yet clear, practical advice on the business side of analytics is lacking. This book fills the void with concrete information on using Big Data in the context of day-to-day insurance operations and strategy. Understand what Big Data is and what it can do Delve into Big Data's specific impact on the insurance industry Learn how advanced analytics can revolutionise the industry Bring Big Data out of IT and into strategy, management, marketing, and more Big Data and analytics is changing business – but how? The majority of Big Data guides discuss data collection, database administration, advanced analytics, and the power of Big Data – but what do you actually do with it? Big Data and Analytics for Insurers answers your questions in real, everyday business terms, tailored specifically to the insurance industry's unique needs, challenges, and targets.
  data science in insurance companies: Applied Insurance Analytics Patricia L. Saporito, 2015 Data is the insurance industry's single greatest asset. Yet many insurers radically underutilize their data assets, and are failing to fully leverage modern analytics. This makes them vulnerable to traditional and non-traditional competitors alike. Today, insurers largely apply analytics in important but stovepiped operational areas like underwriting, claims, marketing and risk management. By and large, they lack an enterprise analytic strategy -- or, if they have one, it is merely an architectural blueprint, inadequately business-driven or strategically aligned. Now, writing specifically for insurance industry professionals and leaders, Patricia Saporito uncovers immense new opportunities for driving competitive advantage from analytics -- and shows how to overcome the obstacles that stand in your way. Drawing on 25+ years of insurance industry experience, Saporito introduces proven best practices for developing, maturing, and profiting from your analytic capabilities. This user-friendly handbook advocates an enterprise strategy approach to analytics, presenting a common framework you can quickly adapt based on your unique business model and current capabilities. Saporito reviews common analytic applications by functional area, offering specific case studies and examples, and helping you build upon the analytics you're already doing. She presents data governance models and models proven to help you organize and deliver trusted data far more effectively. Finally, she provides tools and frameworks for improving the analytic IQ of your entire enterprise, from IT developers to business users.
  data science in insurance companies: Data Science and Risk Analytics in Finance and Insurance Tze Leung Lai, Haipeng Xing, 2024-10-02 This book presents statistics and data science methods for risk analytics in quantitative finance and insurance. Part I covers the background, financial models, and data analytical methods for market risk, credit risk, and operational risk in financial instruments, as well as models of risk premium and insolvency in insurance contracts. Part II provides an overview of machine learning (including supervised, unsupervised, and reinforcement learning), Monte Carlo simulation, and sequential analysis techniques for risk analytics. In Part III, the book offers a non-technical introduction to four key areas in financial technology: artificial intelligence, blockchain, cloud computing, and big data analytics. Key Features: Provides a comprehensive and in-depth overview of data science methods for financial and insurance risks. Unravels bandits, Markov decision processes, reinforcement learning, and their interconnections. Promotes sequential surveillance and predictive analytics for abrupt changes in risk factors. Introduces the ABCDs of FinTech: Artificial intelligence, blockchain, cloud computing, and big data analytics. Includes supplements and exercises to facilitate deeper comprehension.
  data science in insurance companies: The Digital Journey of Banking and Insurance, Volume I Volker Liermann, Claus Stegmann, 2021-10-30 This book, one of three volumes, showcases the effective transformation of companies providing banking and insurance services. This first volume gives a business-oriented introduction to the setting and the current challenges of fintech, regtech, and insurtech and provides an outlook on what will be needed in the future. Specific sub-departments in financial services are examined with a view to accounting, risk, and regulatory segments. The book also addresses the importance of cultural aspects of the coming digital transformation with an eye to requirements that will enable a digital bank or insurance company to thrive in 2025. The angle shifts over the volumes from a business-driven approach in “Disruption and DNA” to a strong technical focus in “Data Storage, Processing and Analysis”, leaving “Digitalization and Machine Learning Applications” with the business and technical aspects in-between.
  data science in insurance companies: Machine Learning in Insurance Jens Perch Nielsen, Alexandru Asimit, Ioannis Kyriakou, 2020-12-02 Machine learning is a relatively new field, without a unanimous definition. In many ways, actuaries have been machine learners. In both pricing and reserving, but also more recently in capital modelling, actuaries have combined statistical methodology with a deep understanding of the problem at hand and how any solution may affect the company and its customers. One aspect that has, perhaps, not been so well developed among actuaries is validation. Discussions among actuaries’ “preferred methods” were often without solid scientific arguments, including validation of the case at hand. Through this collection, we aim to promote a good practice of machine learning in insurance, considering the following three key issues: a) who is the client, or sponsor, or otherwise interested real-life target of the study? b) The reason for working with a particular data set and a clarification of the available extra knowledge, that we also call prior knowledge, besides the data set alone. c) A mathematical statistical argument for the validation procedure.
  data science in insurance companies: Generalized Linear Models for Insurance Data Piet de Jong, Gillian Z. Heller, 2008-02-28 This is the only book actuaries need to understand generalized linear models (GLMs) for insurance applications. GLMs are used in the insurance industry to support critical decisions. Until now, no text has introduced GLMs in this context or addressed the problems specific to insurance data. Using insurance data sets, this practical, rigorous book treats GLMs, covers all standard exponential family distributions, extends the methodology to correlated data structures, and discusses recent developments which go beyond the GLM. The issues in the book are specific to insurance data, such as model selection in the presence of large data sets and the handling of varying exposure times. Exercises and data-based practicals help readers to consolidate their skills, with solutions and data sets given on the companion website. Although the book is package-independent, SAS code and output examples feature in an appendix and on the website. In addition, R code and output for all the examples are provided on the website.
  data science in insurance companies: New Horizons for a Data-Driven Economy José María Cavanillas, Edward Curry, Wolfgang Wahlster, 2016-04-04 In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.
  data science in insurance companies: Hire Purpose Deanna Mulligan, Greg Shaw, 2020-10-13 A WALL STREET JOURNAL BUSINESS BESTSELLER The future of work is already here, and what this future looks like must be a pressing concern for the current generation of leaders in both the private and public sectors. In the next ten to fifteen years, rapid change in a post-pandemic world and emerging technology will revolutionize nearly every job, eliminate some, and create new forms of work that we have yet to imagine. How can we survive and thrive in the face of such drastic change? Deanna Mulligan offers a practical, broad-minded look at the effects of workplace evolution and automation and why the private sector needs to lead the charge in shaping a values-based response. With a focus on the power of education, Mulligan proposes that the solutions to workforce upheaval lie in reskilling and retraining for individuals and companies adapting to rapid change. By creating lifelong learning opportunities that break down boundaries between the classroom and the workplace, businesses can foster personal and career well-being and growth for their employees. Drawing on her own experiences, historical examples, and reports from the frontiers where these issues are unfolding, Mulligan details how business leaders can prepare for and respond to technological disruption. Providing a framework for concrete and meaningful action, Hire Purpose is an essential read about the transformations that will shape the next decade and beyond.
  data science in insurance companies: Big Data for Insurance Companies Marine Corlosquet-Habart, Jacques Janssen, 2018-03-13 This book will be a must for people who want good knowledge of big data concepts and their applications in the real world, particularly in the field of insurance. It will be useful to people working in finance and to masters students using big data tools. The authors present the bases of big data: data analysis methods, learning processes, application to insurance and position within the insurance market. Individual chapters a will be written by well-known authors in this field.
  data science in insurance companies: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
  data science in insurance companies: IoT-Based Data Analytics for the Healthcare Industry Sanjay Kumar Singh, Ravi Shankar Singh, Anil Kumar Pandey, Sandeep S Udmale, Ankit Chaudhary, 2020-11-07 IoT Based Data Analytics for the Healthcare Industry: Techniques and Applications explores recent advances in the analysis of healthcare industry data through IoT data analytics. The book covers the analysis of ubiquitous data generated by the healthcare industry, from a wide range of sources, including patients, doctors, hospitals, and health insurance companies. The book provides AI solutions and support for healthcare industry end-users who need to analyze and manipulate this vast amount of data. These solutions feature deep learning and a wide range of intelligent methods, including simulated annealing, tabu search, genetic algorithm, ant colony optimization, and particle swarm optimization. The book also explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages, challenges and issues in data collection, data handling, and data collection set-up. Healthcare industry data or streaming data generated by ubiquitous sensors cocooned into the IoT requires advanced analytics to transform data into information. With advances in computing power, communications, and techniques for data acquisition, the need for advanced data analytics is in high demand. - Provides state-of-art methods and current trends in data analytics for the healthcare industry - Addresses the top concerns in the healthcare industry using IoT and data analytics, and machine learning and deep learning techniques - Discusses several potential AI techniques developed using IoT for the healthcare industry - Explores challenges, opportunities, and future research directions, and discusses the data collection and pre-processing stages
  data science in insurance companies: Non-Life Insurance Pricing with Generalized Linear Models Esbjörn Ohlsson, Björn Johansson, 2010-03-18 Non-life insurance pricing is the art of setting the price of an insurance policy, taking into consideration varoius properties of the insured object and the policy holder. Introduced by British actuaries generalized linear models (GLMs) have become today a the standard aproach for tariff analysis. The book focuses on methods based on GLMs that have been found useful in actuarial practice and provides a set of tools for a tariff analysis. Basic theory of GLMs in a tariff analysis setting is presented with useful extensions of standarde GLM theory that are not in common use. The book meets the European Core Syllabus for actuarial education and is written for actuarial students as well as practicing actuaries. To support reader real data of some complexity are provided at www.math.su.se/GLMbook.
  data science in insurance companies: Solvency II in the Insurance Industry Maria Heep-Altiner, Martin Mullins, Torsten Rohlfs, 2019-02-22 This book illustrates the EU-wide Solvency II framework for the insurance industry, which was implemented on January 1, 2016, after a long project phase. Analogous to the system for banks, it is based on three pillars and the authors analyze the complete framework pillar by pillar with a consistent data model for a non-life insurer, which was developed by the Research Group Financial & Actuarial Risk Management (FaRis) at the Institute for Insurance Studies of the TH Köln - University of Applied Sciences. The book leverages the long-standing and close cooperation between the University of Limerick (Ireland) and the Institute for Insurance Studies at TH Köln - University of Applied Sciences (Germany).
  data science in insurance companies: Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry Chkoniya, Valentina, 2021-06-25 The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students.
  data science in insurance companies: Predictive Analytics Eric Siegel, 2016-01-12 Mesmerizing & fascinating... —The Seattle Post-Intelligencer The Freakonomics of big data. —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a
  data science in insurance companies: Big Data Science in Finance Irene Aldridge, Marco Avellaneda, 2021-01-08 Explains the mathematics, theory, and methods of Big Data as applied to finance and investing Data science has fundamentally changed Wall Street—applied mathematics and software code are increasingly driving finance and investment-decision tools. Big Data Science in Finance examines the mathematics, theory, and practical use of the revolutionary techniques that are transforming the industry. Designed for mathematically-advanced students and discerning financial practitioners alike, this energizing book presents new, cutting-edge content based on world-class research taught in the leading Financial Mathematics and Engineering programs in the world. Marco Avellaneda, a leader in quantitative finance, and quantitative methodology author Irene Aldridge help readers harness the power of Big Data. Comprehensive in scope, this book offers in-depth instruction on how to separate signal from noise, how to deal with missing data values, and how to utilize Big Data techniques in decision-making. Key topics include data clustering, data storage optimization, Big Data dynamics, Monte Carlo methods and their applications in Big Data analysis, and more. This valuable book: Provides a complete account of Big Data that includes proofs, step-by-step applications, and code samples Explains the difference between Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) Covers vital topics in the field in a clear, straightforward manner Compares, contrasts, and discusses Big Data and Small Data Includes Cornell University-tested educational materials such as lesson plans, end-of-chapter questions, and downloadable lecture slides Big Data Science in Finance: Mathematics and Applications is an important, up-to-date resource for students in economics, econometrics, finance, applied mathematics, industrial engineering, and business courses, and for investment managers, quantitative traders, risk and portfolio managers, and other financial practitioners.
  data science in insurance companies: Outside Insight Jorn Lyseggen, 2017-10-12 Is your business looking out? The world today is drowning in data. There is a treasure trove of valuable and underutilized insights that can be gleaned from information companies and people leave behind on the internet - our 'digital breadcrumbs' - from job postings, to online news, social media, online ad spend, patent applications and more. As a result, we're at the cusp of a major shift in the way businesses are managed and governed - moving from a focus solely on lagging, internal data, toward analyses that also encompass industry-wide, external data to paint a more complete picture of a brand's opportunities and threats and uncover forward-looking insights, in real time. Tomorrow's most successful brands are already embracing Outside Insight, benefitting from an information advantage while their competition is left behind. Drawing on practical examples of transformative, data-led decisions made by brands like Apple, Facebook, Barack Obama and many more, in Outside Insight, Meltwater CEO Jorn Lyseggen illustrates the future of corporate decision-making and offers a detailed plan for business leaders to implement Outside Insight thinking into their company mindset and processes.
  data science in insurance companies: Data Science for Marketing Analytics Tommy Blanchard, Debasish Behera, Pranshu Bhatnagar, 2019-03-30 Explore new and more sophisticated tools that reduce your marketing analytics efforts and give you precise results Key FeaturesStudy new techniques for marketing analyticsExplore uses of machine learning to power your marketing analysesWork through each stage of data analytics with the help of multiple examples and exercisesBook Description Data Science for Marketing Analytics covers every stage of data analytics, from working with a raw dataset to segmenting a population and modeling different parts of the population based on the segments. The book starts by teaching you how to use Python libraries, such as pandas and Matplotlib, to read data from Python, manipulate it, and create plots, using both categorical and continuous variables. Then, you'll learn how to segment a population into groups and use different clustering techniques to evaluate customer segmentation. As you make your way through the chapters, you'll explore ways to evaluate and select the best segmentation approach, and go on to create a linear regression model on customer value data to predict lifetime value. In the concluding chapters, you'll gain an understanding of regression techniques and tools for evaluating regression models, and explore ways to predict customer choice using classification algorithms. Finally, you'll apply these techniques to create a churn model for modeling customer product choices. By the end of this book, you will be able to build your own marketing reporting and interactive dashboard solutions. What you will learnAnalyze and visualize data in Python using pandas and MatplotlibStudy clustering techniques, such as hierarchical and k-means clusteringCreate customer segments based on manipulated data Predict customer lifetime value using linear regressionUse classification algorithms to understand customer choiceOptimize classification algorithms to extract maximal informationWho this book is for Data Science for Marketing Analytics is designed for developers and marketing analysts looking to use new, more sophisticated tools in their marketing analytics efforts. It'll help if you have prior experience of coding in Python and knowledge of high school level mathematics. Some experience with databases, Excel, statistics, or Tableau is useful but not necessary.
  data science in insurance companies: Insurance Transformed Michael Naylor, 2017-10-16 This book explores how a range of innovative disruptive technologies is about to combine to transform the insurance industry, the products it produces, and the way the industry is managed. It argues that unless current insurance providers react to these waves of disruption they will be swept away by new innovators. The book describes what insurers need to do to survive. The main aim is to get insurers to reimagine their industry away from the sale of a one-off product, into the sale of a series of real-time, data-based risk services. While parts of these disruptions have been discussed, this book is the first to bring all the issues together and unites them using a theoretical framework. This book is essential reading for insurance industry participants as well as to academics interested in insurance and understanding the key issues the industry currently faces.
  data science in insurance companies: Cross-Industry Use of Blockchain Technology and Opportunities for the Future Williams, Idongesit, 2020-05-22 Blockchain is a technology that transcends cryptocurrencies. There are other services in different sectors of the economy that can benefit from the trust and security that blockchains offer. For example, financial institutions are using blockchains for international money transfer, and in logistics, it has been used for supply chain management and tracking of goods. As more global companies and governments are experimenting and deploying blockchain solutions, it is necessary to compile knowledge on the best practices, strategies, and failures in order to create a better awareness of how blockchain could either support or add value to other services. Cross-Industry Use of Blockchain Technology and Opportunities for the Future provides emerging research highlighting the possibilities inherent in blockchain for different sectors of the economy and the added value blockchain can provide for the future of these different sectors. Featuring coverage on a broad range of topics such as data privacy, information sharing, and digital identity, this book is ideally designed for IT specialists, consultants, design engineers, cryptographers, service designers, researchers, academics, government officials, and industry professionals.
  data science in insurance companies: Generalized Linear Models for Insurance Rating Mark Goldburd, Anand Khare, Dan Tevet, 2016-06-08
  data science in insurance companies: Insurance and Issues in Financial Soundness Nigel Davies, Richard Podpiera, Mr.Udaibir S. Das, 2003-07-01 This paper explores insurance as a source of financial system vulnerability. It provides a brief overview of the insurance industry and reviews the risks it faces, as well as several recent failures of insurance companies that had systemic implications. Assimilation of banking-type activities by life insurers appears to be the key systemic vulnerability. Building on this experience and the experience gained under the FSAP, the paper proposes key indicators that should be compiled and used for surveillance of financial soundness of insurance companies and the insurance sector as a whole.
  data science in insurance companies: Big Data Analytics in the Insurance Market Kiran Sood, Balamurugan Balusamy, Simon Grima, Pierpaolo Marano, 2022-07-18 Big Data Analytics in the Insurance Market is an industry-specific guide to creating operational effectiveness, managing risk, improving financials, and retaining customers. A must for people seeking to broaden their knowledge of big data concepts and their real-world applications, particularly in the field of insurance.
  data science in insurance companies: Computational Actuarial Science with R Arthur Charpentier, 2014-08-26 A Hands-On Approach to Understanding and Using Actuarial ModelsComputational Actuarial Science with R provides an introduction to the computational aspects of actuarial science. Using simple R code, the book helps you understand the algorithms involved in actuarial computations. It also covers more advanced topics, such as parallel computing and C/
  data science in insurance companies: Leveraging Data Science for Global Health Leo Anthony Celi, Maimuna S. Majumder, Patricia Ordóñez, Juan Sebastian Osorio, Kenneth E. Paik, Melek Somai, 2020-07-31 This open access book explores ways to leverage information technology and machine learning to combat disease and promote health, especially in resource-constrained settings. It focuses on digital disease surveillance through the application of machine learning to non-traditional data sources. Developing countries are uniquely prone to large-scale emerging infectious disease outbreaks due to disruption of ecosystems, civil unrest, and poor healthcare infrastructure – and without comprehensive surveillance, delays in outbreak identification, resource deployment, and case management can be catastrophic. In combination with context-informed analytics, students will learn how non-traditional digital disease data sources – including news media, social media, Google Trends, and Google Street View – can fill critical knowledge gaps and help inform on-the-ground decision-making when formal surveillance systems are insufficient.
  data science in insurance companies: The Enterprise Big Data Lake Alex Gorelik, 2019-02-21 The data lake is a daring new approach for harnessing the power of big data technology and providing convenient self-service capabilities. But is it right for your company? This book is based on discussions with practitioners and executives from more than a hundred organizations, ranging from data-driven companies such as Google, LinkedIn, and Facebook, to governments and traditional corporate enterprises. You’ll learn what a data lake is, why enterprises need one, and how to build one successfully with the best practices in this book. Alex Gorelik, CTO and founder of Waterline Data, explains why old systems and processes can no longer support data needs in the enterprise. Then, in a collection of essays about data lake implementation, you’ll examine data lake initiatives, analytic projects, experiences, and best practices from data experts working in various industries. Get a succinct introduction to data warehousing, big data, and data science Learn various paths enterprises take to build a data lake Explore how to build a self-service model and best practices for providing analysts access to the data Use different methods for architecting your data lake Discover ways to implement a data lake from experts in different industries
  data science in insurance companies: Decision Intelligence Analytics and the Implementation of Strategic Business Management P. Mary Jeyanthi, Tanupriya Choudhury, Dieu Hack-Polay, T P Singh, Sheikh Abujar, 2022-01-01 This book presents a framework for developing an analytics strategy that includes a range of activities, from problem definition and data collection to data warehousing, analysis, and decision making. The authors examine best practices in team analytics strategies such as player evaluation, game strategy, and training and performance. They also explore the way in which organizations can use analytics to drive additional revenue and operate more efficiently. The authors provide keys to building and organizing a decision intelligence analytics that delivers insights into all parts of an organization. The book examines the criteria and tools for evaluating and selecting decision intelligence analytics technologies and the applicability of strategies for fostering a culture that prioritizes data-driven decision making. Each chapter is carefully segmented to enable the reader to gain knowledge in business intelligence, decision making and artificial intelligence in a strategic management context.
  data science in insurance companies: Big Data Analytics in the Insurance Market Kiran Sood, Balamurugan Balusamy, Simon Grima, Pierpaolo Marano, 2022-07-18 Big Data Analytics in the Insurance Market is an industry-specific guide to creating operational effectiveness, managing risk, improving financials, and retaining customers. A must for people seeking to broaden their knowledge of big data concepts and their real-world applications, particularly in the field of insurance.
  data science in insurance companies: Big Data Revolution Rob Thomas, Patrick McSharry, 2015-03-02 Exploit the power and potential of Big Data to revolutionize business outcomes Big Data Revolution is a guide to improving performance, making better decisions, and transforming business through the effective use of Big Data. In this collaborative work by an IBM Vice President of Big Data Products and an Oxford Research Fellow, this book presents inside stories that demonstrate the power and potential of Big Data within the business realm. Readers are guided through tried-and-true methodologies for getting more out of data, and using it to the utmost advantage. This book describes the major trends emerging in the field, the pitfalls and triumphs being experienced, and the many considerations surrounding Big Data, all while guiding readers toward better decision making from the perspective of a data scientist. Companies are generating data faster than ever before, and managing that data has become a major challenge. With the right strategy, Big Data can be a powerful tool for creating effective business solutions – but deep understanding is key when applying it to individual business needs. Big Data Revolution provides the insight executives need to incorporate Big Data into a better business strategy, improving outcomes with innovation and efficient use of technology. Examine the major emerging patterns in Big Data Consider the debate surrounding the ethical use of data Recognize patterns and improve personal and organizational performance Make more informed decisions with quantifiable results In an information society, it is becoming increasingly important to make sense of data in an economically viable way. It can drive new revenue streams and give companies a competitive advantage, providing a way forward for businesses navigating an increasingly complex marketplace. Big Data Revolution provides expert insight on the tool that can revolutionize industries.
  data science in insurance companies: Applied Econometrics with R Christian Kleiber, Achim Zeileis, 2008-12-10 R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.
  data science in insurance companies: Mathematical Statistics with Resampling and R Laura M. Chihara, Tim C. Hesterberg, 2018-09-17 This thoroughly updated second edition combines the latest software applications with the benefits of modern resampling techniques Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. The second edition of Mathematical Statistics with Resampling and R combines modern resampling techniques and mathematical statistics. This book has been classroom-tested to ensure an accessible presentation, uses the powerful and flexible computer language R for data analysis and explores the benefits of modern resampling techniques. This book offers an introduction to permutation tests and bootstrap methods that can serve to motivate classical inference methods. The book strikes a balance between theory, computing, and applications, and the new edition explores additional topics including consulting, paired t test, ANOVA and Google Interview Questions. Throughout the book, new and updated case studies are included representing a diverse range of subjects such as flight delays, birth weights of babies, and telephone company repair times. These illustrate the relevance of the real-world applications of the material. This new edition: • Puts the focus on statistical consulting that emphasizes giving a client an understanding of data and goes beyond typical expectations • Presents new material on topics such as the paired t test, Fisher's Exact Test and the EM algorithm • Offers a new section on Google Interview Questions that illustrates statistical thinking • Provides a new chapter on ANOVA • Contains more exercises and updated case studies, data sets, and R code Written for undergraduate students in a mathematical statistics course as well as practitioners and researchers, the second edition of Mathematical Statistics with Resampling and R presents a revised and updated guide for applying the most current resampling techniques to mathematical statistics.
  data science in insurance companies: Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques Bart Baesens, Veronique Van Vlasselaer, Wouter Verbeke, 2015-08-17 Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution. Early detection is a key factor in mitigating fraud damage, but it involves more specialized techniques than detecting fraud at the more advanced stages. This invaluable guide details both the theory and technical aspects of these techniques, and provides expert insight into streamlining implementation. Coverage includes data gathering, preprocessing, model building, and post-implementation, with comprehensive guidance on various learning techniques and the data types utilized by each. These techniques are effective for fraud detection across industry boundaries, including applications in insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and more, giving you a highly practical framework for fraud prevention. It is estimated that a typical organization loses about 5% of its revenue to fraud every year. More effective fraud detection is possible, and this book describes the various analytical techniques your organization must implement to put a stop to the revenue leak. Examine fraud patterns in historical data Utilize labeled, unlabeled, and networked data Detect fraud before the damage cascades Reduce losses, increase recovery, and tighten security The longer fraud is allowed to go on, the more harm it causes. It expands exponentially, sending ripples of damage throughout the organization, and becomes more and more complex to track, stop, and reverse. Fraud prevention relies on early and effective fraud detection, enabled by the techniques discussed here. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques helps you stop fraud in its tracks, and eliminate the opportunities for future occurrence.
  data science in insurance companies: Technology and the Insurance Industry Antonella Cappiello, 2018-02-23 The book analyzes the role of technology in the redefinition of the competitiveness of insurance markets. With a focus on the competitive challenges of InsurTech startup to the incumbent insurers, the book will discuss the strategic role of technology both in the development and in the distribution of insurance services and explore the customer relationship evolution following the digitalization of services offered. The book presents original theoretical and empirical contributions addressing how digitalization impacts the insurance environment and regulation, and how InsurTech development represents a threat for traditional companies, from Big Data analysis to digital devices, from personal interactivity to home automation systems development. The project’s key benefit is up-to-date analysis of the competitiveness of technology usage in the insurance field, with particular reference to the distributive variable and to the future trends of the customer relationship in the short and medium-long term. The book will be of particular interest to scholars and students of insurance and financial technology.
  data science in insurance companies: Data Science and Big Data Analytics Durgesh Kumar Mishra, Xin-She Yang, Aynur Unal, 2018-08-01 This book presents conjectural advances in big data analysis, machine learning and computational intelligence, as well as their potential applications in scientific computing. It discusses major issues pertaining to big data analysis using computational intelligence techniques, and the conjectural elements are supported by simulation and modelling applications to help address real-world problems. An extensive bibliography is provided at the end of each chapter. Further, the main content is supplemented by a wealth of figures, graphs, and tables, offering a valuable guide for researchers in the field of big data analytics and computational intelligence.
  data science in insurance companies: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.
  data science in insurance companies: Effective Statistical Learning Methods for Actuaries I Michel Denuit, Donatien Hainaut, Julien Trufin, 2019-09-03 This book summarizes the state of the art in generalized linear models (GLMs) and their various extensions: GAMs, mixed models and credibility, and some nonlinear variants (GNMs). In order to deal with tail events, analytical tools from Extreme Value Theory are presented. Going beyond mean modeling, it considers volatility modeling (double GLMs) and the general modeling of location, scale and shape parameters (GAMLSS). Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and case studies, providing numerical illustrations using the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. This is the first of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently.
  data science in insurance companies: Artificial Intelligence and Exponential Technologies: Business Models Evolution and New Investment Opportunities Francesco Corea, 2017-01-11 Artificial Intelligence is a huge breakthrough technology that is changing our world. It requires some degrees of technical skills to be developed and understood, so in this book we are going to first of all define AI and categorize it with a non-technical language. We will explain how we reached this phase and what historically happened to artificial intelligence in the last century. Recent advancements in machine learning, neuroscience, and artificial intelligence technology will be addressed, and new business models introduced for and by artificial intelligence research will be analyzed. Finally, we will describe the investment landscape, through the quite comprehensive study of almost 14,000 AI companies and we will discuss important features and characteristics of both AI investors as well as investments. This is the “Internet of Thinks” era. AI is revolutionizing the world we live in. It is augmenting the human experiences, and it targets to amplify human intelligence in a future not so distant from today. Although AI can change our lives, it comes also with some responsibilities. We need to start thinking about how to properly design an AI engine for specific purposes, as well as how to control it (and perhaps switch it off if needed). And above all, we need to start trusting our technology, and its ability to reach an effective and smart decision.
  data science in insurance companies: Nature-Inspired Computing and Optimization Srikanta Patnaik, Xin-She Yang, Kazumi Nakamatsu, 2017-03-07 The book provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimization. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications. Applications cover a wide range of real-world optimization problems: from feature selection and image enhancement to scheduling and dynamic resource management, from wireless sensor networks and wiring network diagnosis to sports training planning and gene expression, from topology control and morphological filters to nutritional meal design and antenna array design. There are a few theoretical chapters comparing different existing techniques, exploring the advantages of nature-inspired computing over other methods, and investigating the mixing time of genetic algorithms. The book also introduces a wide range of algorithms, including the ant colony optimization, the bat algorithm, genetic algorithms, the collision-based optimization algorithm, the flower pollination algorithm, multi-agent systems and particle swarm optimization. This timely book is intended as a practice-oriented reference guide for students, researchers and professionals.
  data science in insurance companies: Data Alchemy in the Insurance Industry Sanjay Taneja, Pawan Kumar, Reepu, Mohit Kukreti, Ercan Özen, 2024-11-21 This collected edition provides a comprehensive and practical roadmap for insurers, data scientists, technologists, and insurance enthusiasts alike, to navigate the data-driven revolution that is sweeping the insurance landscape.
  data science in insurance companies: Health Insurance Handbook Hong Wang, Kimberly Switlick, Christine Ortiz, Beatriz Zurita, Catherine Connor, 2012-01-18 Many countries that subscribe to the Millennium Development Goals (MDGs) have committed to ensuring access to basic health services for their citizens. Health insurance has been considered and promoted as the major financing mechanism to improve access to health services, as well to provide financial risk protection.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with minimum time …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, released in …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process from …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical barriers …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be collected, …