Data Science Skills Checklist



  data science skills checklist: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.
  data science skills checklist: Handbook of Big Data and Analytics in Accounting and Auditing Tarek Rana, Jan Svanberg, Peter Öhman, Alan Lowe, 2023-02-03 This handbook collects the most up-to-date scholarship, knowledge, and new developments of big data and data analytics by bringing together many strands of contextual and disciplinary research. In recent times, while there has been considerable research in exploring the role of big data, data analytics, and textual analytics in accounting, and auditing, we still lack evidence on what kinds of best practices academics, practitioners, and organizations can implement and use. To achieve this aim, the handbook focuses on both conventional and contemporary issues facing by academics, practitioners, and organizations particularly when technology and business environments are changing faster than ever. All the chapters in this handbook provide both retrospective and contemporary views and commentaries by leading and knowledgeable scholars in the field, who offer unique insights on the changing role of accounting and auditing in today’s data and analytics driven environment. Aimed at academics, practitioners, students, and consultants in the areas of accounting, auditing, and other business disciplines, the handbook provides high-level insight into the design, implementation, and working of big data and data analytics practices for all types of organizations worldwide. The leading scholars in the field provide critical evaluations and guidance on big data and data analytics by illustrating issues related to various sectors such as public, private, not-for-profit, and social enterprises. The handbook’s content will be highly desirable and accessible to accounting and non-accounting audiences across the globe.
  data science skills checklist: Ethics and Data Science Mike Loukides, Hilary Mason, DJ Patil, 2018-07-25 As the impact of data science continues to grow on society there is an increased need to discuss how data is appropriately used and how to address misuse. Yet, ethical principles for working with data have been available for decades. The real issue today is how to put those principles into action. With this report, authors Mike Loukides, Hilary Mason, and DJ Patil examine practical ways for making ethical data standards part of your work every day. To help you consider all of possible ramifications of your work on data projects, this report includes: A sample checklist that you can adapt for your own procedures Five framing guidelines (the Five C’s) for building data products: consent, clarity, consistency, control, and consequences Suggestions for building ethics into your data-driven culture Now is the time to invest in a deliberate practice of data ethics, for better products, better teams, and better outcomes. Get a copy of this report and learn what it takes to do good data science today.
  data science skills checklist: Data Science Strategy For Dummies Ulrika Jägare, 2019-06-12 All the answers to your data science questions Over half of all businesses are using data science to generate insights and value from big data. How are they doing it? Data Science Strategy For Dummies answers all your questions about how to build a data science capability from scratch, starting with the “what” and the “why” of data science and covering what it takes to lead and nurture a top-notch team of data scientists. With this book, you’ll learn how to incorporate data science as a strategic function into any business, large or small. Find solutions to your real-life challenges as you uncover the stories and value hidden within data. Learn exactly what data science is and why it’s important Adopt a data-driven mindset as the foundation to success Understand the processes and common roadblocks behind data science Keep your data science program focused on generating business value Nurture a top-quality data science team In non-technical language, Data Science Strategy For Dummies outlines new perspectives and strategies to effectively lead analytics and data science functions to create real value.
  data science skills checklist: Science Educator's Guide to Laboratory Assessment Rodney L. Doran, 2002 Focus on frequent, accurate feedback with this newly expanded guide to understanding assessment. Field-tested and classroom ready, it's designed to help you reinforce productive learning habits while gauging your lessons' effectiveness. The book opens with an up-to-date discussion of assessment theory, research, and uses. Then comes a wealth of sample assessment activities (nearly 50 in all, including 15 new ones) in biology, chemistry, physics, and Earth science. You'll like the activities' flexibility. Some are short tasks that zero in on a few specific process skills; others are investigations involving a variety of skills you can cover in one or two class periods; and still others are extended, in-depth investigations that take several weeks to complete. Keyed to the U.S. National Science Education Standards, the activities include reproducible task sheets and scoring rubrics. All are ideal for helping your students reflect on their own learning during science labs.
  data science skills checklist: Data Science Field Cady, 2020-12-30 Tap into the power of data science with this comprehensive resource for non-technical professionals Data Science: The Executive Summary – A Technical Book for Non-Technical Professionals is a comprehensive resource for people in non-engineer roles who want to fully understand data science and analytics concepts. Accomplished data scientist and author Field Cady describes both the “business side” of data science, including what problems it solves and how it fits into an organization, and the technical side, including analytical techniques and key technologies. Data Science: The Executive Summary covers topics like: Assessing whether your organization needs data scientists, and what to look for when hiring them When Big Data is the best approach to use for a project, and when it actually ties analysts’ hands Cutting edge Artificial Intelligence, as well as classical approaches that work better for many problems How many techniques rely on dubious mathematical idealizations, and when you can work around them Perfect for executives who make critical decisions based on data science and analytics, as well as mangers who hire and assess the work of data scientists, Data Science: The Executive Summary also belongs on the bookshelves of salespeople and marketers who need to explain what a data analytics product does. Finally, data scientists themselves will improve their technical work with insights into the goals and constraints of the business situation.
  data science skills checklist: Managing Your Data Science Projects Robert de Graaf, 2019-06-07 At first glance, the skills required to work in the data science field appear to be self-explanatory. Do not be fooled. Impactful data science demands an interdisciplinary knowledge of business philosophy, project management, salesmanship, presentation, and more. In Managing Your Data Science Projects, author Robert de Graaf explores important concepts that are frequently overlooked in much of the instructional literature that is available to data scientists new to the field. If your completed models are to be used and maintained most effectively, you must be able to present and sell them within your organization in a compelling way. The value of data science within an organization cannot be overstated. Thus, it is vital that strategies and communication between teams are dexterously managed. Three main ways that data science strategy is used in a company is to research its customers, assess risk analytics, and log operational measurements. These all require different managerial instincts, backgrounds, and experiences, and de Graaf cogently breaks down the unique reasons behind each. They must align seamlessly to eventually be adopted as dynamic models. Data science is a relatively new discipline, and as such, internal processes for it are not as well-developed within an operational business as others. With Managing Your Data Science Projects, you will learn how to create products that solve important problems for your customers and ensure that the initial success is sustained throughout the product’s intended life. Your users will trust you and your models, and most importantly, you will be a more well-rounded and effectual data scientist throughout your career. Who This Book Is For Early-career data scientists, managers of data scientists, and those interested in entering the field of data science
  data science skills checklist: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Aurélien Géron, 2019-09-05 Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets
  data science skills checklist: Digital Transformation of Education and Learning - Past, Present and Future Don Passey, Denise Leahy, Lawrence Williams, Jaana Holvikivi, Mikko Ruohonen, 2022-03-12 This book constitutes the refereed post-conference proceedings of the IFIP TC 3 Open Conference on Computers in Education, OCCE 2021, held in Tampere, Finland, in August 2021. The 22 full papers and 2 short papers included in this volume were carefully reviewed and selected from 44 submissions. The papers discuss key emerging topics and evolving practices in the area of educational computing research. They are organized in the following topical sections: Digital education across educational institutions; National policies and plans for digital competence; Learning with digital technologies; and Management issues.
  data science skills checklist: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results
  data science skills checklist: Data Science from Scratch Joel Grus, 2015-04-14 Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
  data science skills checklist: Doing Data Science Cathy O'Neil, Rachel Schutt, 2013-10-09 Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
  data science skills checklist: Data Science Field Cady, 2020-11-25 Tap into the power of data science with this comprehensive resource for non-technical professionals Data Science: The Executive Summary – A Technical Book for Non-Technical Professionals is a comprehensive resource for people in non-engineer roles who want to fully understand data science and analytics concepts. Accomplished data scientist and author Field Cady describes both the “business side” of data science, including what problems it solves and how it fits into an organization, and the technical side, including analytical techniques and key technologies. Data Science: The Executive Summary covers topics like: Assessing whether your organization needs data scientists, and what to look for when hiring them When Big Data is the best approach to use for a project, and when it actually ties analysts’ hands Cutting edge Artificial Intelligence, as well as classical approaches that work better for many problems How many techniques rely on dubious mathematical idealizations, and when you can work around them Perfect for executives who make critical decisions based on data science and analytics, as well as mangers who hire and assess the work of data scientists, Data Science: The Executive Summary also belongs on the bookshelves of salespeople and marketers who need to explain what a data analytics product does. Finally, data scientists themselves will improve their technical work with insights into the goals and constraints of the business situation.
  data science skills checklist: Trustworthy Online Controlled Experiments Ron Kohavi, Diane Tang, Ya Xu, 2020-04-02 Getting numbers is easy; getting numbers you can trust is hard. This practical guide by experimentation leaders at Google, LinkedIn, and Microsoft will teach you how to accelerate innovation using trustworthy online controlled experiments, or A/B tests. Based on practical experiences at companies that each run more than 20,000 controlled experiments a year, the authors share examples, pitfalls, and advice for students and industry professionals getting started with experiments, plus deeper dives into advanced topics for practitioners who want to improve the way they make data-driven decisions. Learn how to • Use the scientific method to evaluate hypotheses using controlled experiments • Define key metrics and ideally an Overall Evaluation Criterion • Test for trustworthiness of the results and alert experimenters to violated assumptions • Build a scalable platform that lowers the marginal cost of experiments close to zero • Avoid pitfalls like carryover effects and Twyman's law • Understand how statistical issues play out in practice.
  data science skills checklist: Dear Data Giorgia Lupi, Stefanie Posavec, 2016-09-13 Equal parts mail art, data visualization, and affectionate correspondence, Dear Data celebrates the infinitesimal, incomplete, imperfect, yet exquisitely human details of life, in the words of Maria Popova (Brain Pickings), who introduces this charming and graphically powerful book. For one year, Giorgia Lupi, an Italian living in New York, and Stefanie Posavec, an American in London, mapped the particulars of their daily lives as a series of hand-drawn postcards they exchanged via mail weekly—small portraits as full of emotion as they are data, both mundane and magical. Dear Data reproduces in pinpoint detail the full year's set of cards, front and back, providing a remarkable portrait of two artists connected by their attention to the details of their lives—including complaints, distractions, phone addictions, physical contact, and desires. These details illuminate the lives of two remarkable young women and also inspire us to map our own lives, including specific suggestions on what data to draw and how. A captivating and unique book for designers, artists, correspondents, friends, and lovers everywhere.
  data science skills checklist: Driven by Data Paul Bambrick-Santoyo, 2010-04-12 Offers a practical guide for improving schools dramatically that will enable all students from all backgrounds to achieve at high levels. Includes assessment forms, an index, and a DVD.
  data science skills checklist: Pandas for Everyone Daniel Y. Chen, 2017-12-15 The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine datasets and handle missing data Reshape, tidy, and clean datasets so they’re easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large datasets with groupby Leverage Pandas’ advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the “best” Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning
  data science skills checklist: Concise Survey of Computer Methods Peter Naur, 1974
  data science skills checklist: Who Gets In and Why Jeffrey Selingo, 2020-09-15 From award-winning higher education journalist and New York Times bestselling author Jeffrey Selingo comes a revealing look from inside the admissions office—one that identifies surprising strategies that will aid in the college search. Getting into a top-ranked college has never seemed more impossible, with acceptance rates at some elite universities dipping into the single digits. In Who Gets In and Why, journalist and higher education expert Jeffrey Selingo dispels entrenched notions of how to compete and win at the admissions game, and reveals that teenagers and parents have much to gain by broadening their notion of what qualifies as a “good college.” Hint: it’s not all about the sticker on the car window. Selingo, who was embedded in three different admissions offices—a selective private university, a leading liberal arts college, and a flagship public campus—closely observed gatekeepers as they made their often agonizing and sometimes life-changing decisions. He also followed select students and their parents, and he traveled around the country meeting with high school counselors, marketers, behind-the-scenes consultants, and college rankers. While many have long believed that admissions is merit-based, rewarding the best students, Who Gets In and Why presents a more complicated truth, showing that “who gets in” is frequently more about the college’s agenda than the applicant. In a world where thousands of equally qualified students vie for a fixed number of spots at elite institutions, admissions officers often make split-second decisions based on a variety of factors—like diversity, money, and, ultimately, whether a student will enroll if accepted. One of the most insightful books ever about “getting in” and what higher education has become, Who Gets In and Why not only provides an unusually intimate look at how admissions decisions get made, but guides prospective students on how to honestly assess their strengths and match with the schools that will best serve their interests.
  data science skills checklist: Analytical Skills for AI and Data Science Daniel Vaughan, 2020-05-21 While several market-leading companies have successfully transformed their business models by following data- and AI-driven paths, the vast majority have yet to reap the benefits. How can your business and analytics units gain a competitive advantage by capturing the full potential of this predictive revolution? This practical guide presents a battle-tested end-to-end method to help you translate business decisions into tractable prescriptive solutions using data and AI as fundamental inputs. Author Daniel Vaughan shows data scientists, analytics practitioners, and others interested in using AI to transform their businesses not only how to ask the right questions but also how to generate value using modern AI technologies and decision-making principles. You’ll explore several use cases common to many enterprises, complete with examples you can apply when working to solve your own issues. Break business decisions into stages that can be tackled using different skills from the analytical toolbox Identify and embrace uncertainty in decision making and protect against common human biases Customize optimal decisions to different customers using predictive and prescriptive methods and technologies Ask business questions that create high value through AI- and data-driven technologies
  data science skills checklist: Data Points Nathan Yau, 2013-03-25 A fresh look at visualization from the author of Visualize This Whether it's statistical charts, geographic maps, or the snappy graphical statistics you see on your favorite news sites, the art of data graphics or visualization is fast becoming a movement of its own. In Data Points: Visualization That Means Something, author Nathan Yau presents an intriguing complement to his bestseller Visualize This, this time focusing on the graphics side of data analysis. Using examples from art, design, business, statistics, cartography, and online media, he explores both standard-and not so standard-concepts and ideas about illustrating data. Shares intriguing ideas from Nathan Yau, author of Visualize This and creator of flowingdata.com, with over 66,000 subscribers Focuses on visualization, data graphics that help viewers see trends and patterns they might not otherwise see in a table Includes examples from the author's own illustrations, as well as from professionals in statistics, art, design, business, computer science, cartography, and more Examines standard rules across all visualization applications, then explores when and where you can break those rules Create visualizations that register at all levels, with Data Points: Visualization That Means Something.
  data science skills checklist: A Checklist For Everything (eBook) Dr. Linda Karges-Bone, 2008-09-01 A Checklist for Everything! is chock-full of research-based checklists that meet national standards and promise to save you valuable time and energy. Checklists are effective as an assessment and reporting tool, to write a grant proposal, sit on a committee for curriculum change or search for a direct new way to inform parents. You will find exactly what you need in this book.
  data science skills checklist: How to Lead in Data Science Jike Chong, Yue Cathy Chang, 2021-12-28 A field guide for the unique challenges of data science leadership, filled with transformative insights, personal experiences, and industry examples. In How To Lead in Data Science you will learn: Best practices for leading projects while balancing complex trade-offs Specifying, prioritizing, and planning projects from vague requirements Navigating structural challenges in your organization Working through project failures with positivity and tenacity Growing your team with coaching, mentoring, and advising Crafting technology roadmaps and championing successful projects Driving diversity, inclusion, and belonging within teams Architecting a long-term business strategy and data roadmap as an executive Delivering a data-driven culture and structuring productive data science organizations How to Lead in Data Science is full of techniques for leading data science at every seniority level—from heading up a single project to overseeing a whole company's data strategy. Authors Jike Chong and Yue Cathy Chang share hard-won advice that they've developed building data teams for LinkedIn, Acorns, Yiren Digital, large asset-management firms, Fortune 50 companies, and more. You'll find advice on plotting your long-term career advancement, as well as quick wins you can put into practice right away. Carefully crafted assessments and interview scenarios encourage introspection, reveal personal blind spots, and highlight development areas. About the technology Lead your data science teams and projects to success! To make a consistent, meaningful impact as a data science leader, you must articulate technology roadmaps, plan effective project strategies, support diversity, and create a positive environment for professional growth. This book delivers the wisdom and practical skills you need to thrive as a data science leader at all levels, from team member to the C-suite. About the book How to Lead in Data Science shares unique leadership techniques from high-performance data teams. It’s filled with best practices for balancing project trade-offs and producing exceptional results, even when beginning with vague requirements or unclear expectations. You’ll find a clearly presented modern leadership framework based on current case studies, with insights reaching all the way to Aristotle and Confucius. As you read, you’ll build practical skills to grow and improve your team, your company’s data culture, and yourself. What's inside How to coach and mentor team members Navigate an organization’s structural challenges Secure commitments from other teams and partners Stay current with the technology landscape Advance your career About the reader For data science practitioners at all levels. About the author Dr. Jike Chong and Yue Cathy Chang build, lead, and grow high-performing data teams across industries in public and private companies, such as Acorns, LinkedIn, large asset-management firms, and Fortune 50 companies. Table of Contents 1 What makes a successful data scientist? PART 1 THE TECH LEAD: CULTIVATING LEADERSHIP 2 Capabilities for leading projects 3 Virtues for leading projects PART 2 THE MANAGER: NURTURING A TEAM 4 Capabilities for leading people 5 Virtues for leading people PART 3 THE DIRECTOR: GOVERNING A FUNCTION 6 Capabilities for leading a function 7 Virtues for leading a function PART 4 THE EXECUTIVE: INSPIRING AN INDUSTRY 8 Capabilities for leading a company 9 Virtues for leading a company PART 5 THE LOOP AND THE FUTURE 10 Landscape, organization, opportunity, and practice 11 Leading in data science and a future outlook
  data science skills checklist: Soft Computing in Data Science Bee Wah Yap, Azlinah Hj Mohamed, Michael W. Berry, 2018-12-10 This book constitutes the refereed proceedings of the 4th International Conference on Soft Computing in Data Science, SCDS 2018, held in Bangkok, Thailand, in August 2018. The 30 revised full papers presented were carefully reviewed and selected from 75 submissions. The papers are organized in topical sections on machine and deep learning, image processing, financial and fuzzy mathematics, optimization algorithms, data and text analytics, data visualization.
  data science skills checklist: Introduction to Data Science Rafael A. Irizarry, 2019-11-20 Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.
  data science skills checklist: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-24 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder
  data science skills checklist: A Practical Guide to Artificial Intelligence and Data Analytics Rayan Wali, 2021-06-12 Whether you are looking to prepare for AI/ML/Data Science job interviews or you are a beginner in the field of Data Science and AI, this book is designed for engineers and AI enthusiasts like you at all skill levels. Taking a different approach from a traditional textbook style of instruction, A Practical Guide to AI and Data Analytics touches on all of the fundamental topics you will need to understand deeper into machine learning and artificial intelligence research, literature, and practical applications with its four parts: Part I: Concept Instruction Part II: 8 Full-Length Case Studies Part III: 50+ Mixed Exercises Part IV: A Full-Length Assessment With an illustrative approach to instruction, worked examples, and case studies, this easy-to-understand book simplifies many of the AI and Data Analytics key concepts, leading to an improvement of AI/ML system design skills.
  data science skills checklist: The Manager's Path Camille Fournier, 2017-03-13 Managing people is difficult wherever you work. But in the tech industry, where management is also a technical discipline, the learning curve can be brutal—especially when there are few tools, texts, and frameworks to help you. In this practical guide, author Camille Fournier (tech lead turned CTO) takes you through each stage in the journey from engineer to technical manager. From mentoring interns to working with senior staff, you’ll get actionable advice for approaching various obstacles in your path. This book is ideal whether you’re a new manager, a mentor, or a more experienced leader looking for fresh advice. Pick up this book and learn how to become a better manager and leader in your organization. Begin by exploring what you expect from a manager Understand what it takes to be a good mentor, and a good tech lead Learn how to manage individual members while remaining focused on the entire team Understand how to manage yourself and avoid common pitfalls that challenge many leaders Manage multiple teams and learn how to manage managers Learn how to build and bootstrap a unifying culture in teams
  data science skills checklist: Data Driven Differentiation in the Standards-Based Classroom Gayle H. Gregory, Lin Kuzmich, 2014-05-22 Collect the data you need to reach every student! Veteran educators Gregory and Kuzmich provide user-friendly techniques for data-gathering, helping you to differentiate instruction. This informative book is now fully updated to support the Common Core and other key standards, and includes: Step-by-step guidance on gathering data to improve classroom dynamics, pinpoint student learning styles, adjust lessons for different learners, and inform diagnostic teaching and assessment Techniques for using data to refresh and strengthen curriculum, including numerous unit and lesson plans fully linked with the Common Core A wealth of templates for fast and simple data collection Updated differentiation strategies for the Common Core and other key standards, including the Career and College Readiness Standards and the Standards of Mathematical Practice
  data science skills checklist: The Science of Evaluation Ray Pawson, 2013-02-01 Evaluation researchers are tasked with providing the evidence to guide programme building and to assess its outcomes. As such, they labour under the highest expectations - bringing independence and objectivity to policy making. They face huge challenges, given the complexity of modern interventions and the politicised backdrop to all of their investigations. They have responded with a huge portfolio of research techniques and, through their professional associations, have set up schemes to establish standards for evaluative inquiry and to accredit evaluation practitioners. A big question remains. Has this monumental effort produced a progressive, cumulative and authoritative body of knowledge that we might think of as evaluation science? This is the question addressed by Ray Pawson in this sequel to Realistic Evaluation and Evidence-based Policy. In answer, he provides a detailed blueprint for an evaluation science based on realist principles.
  data science skills checklist: Data Visualization, Part 2 Tarek Azzam, Stephanie Evergreen, 2013-12-31 This issue delivers concrete suggestions for optimally using data visualization in evaluation, as well as suggestions for best practices in data visualization design. It focuses on specific quantitative and qualitative data visualization approaches that include data dashboards, graphic recording, and geographic information systems (GIS). Readers will get a step-by-step process for designing an effective data dashboard system for programs and organizations, and various suggestions to improve their utility. The next section illustrates the role that graphic recording can play in helping programs and evaluators understand and communicate the mission and impact that an intervention is having in a democratic and culturally competent way. The GIS section provides specific examples of how mapped data can be used to understand program implementation and effectiveness, and the influence that the environment has on these outcomes. Discusses best practices that inform and shape our data visualization design choices Highlights the best use of each tool/approach Provides suggestions for effective practice Discuss the strengths and limitations of each approach in evaluation practice This is the 140th volume of the Jossey-Bass quarterly report series New Directions for Evaluation, an official publication of the American Evaluation Association.
  data science skills checklist: Strategies for Teaching Science: Levels 6-12 Barbara Houtz, 2011-07-01 Developed for grades 6-12, this rich resource provides teachers with practical strategies to enhance science instruction. Strategies and model lessons are provided in each of the following overarching topics: inquiry and exploration, critical thinking and questioning, real-world applications, integrating the content areas and technology, and assessment. Research-based information and management techniques are also provided to support teachers as they implement the strategies within this resource. This resource supports core concepts of STEM instruction.
  data science skills checklist: Data Science and Big Data Analytics EMC Education Services, 2014-12-19 Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!
  data science skills checklist: Making Connections in Elementary and Middle School Social Studies Andrew P. Johnson, 2009-10-15 Making Connections in Elementary and Middle School Social Studies, Second Edition is the best text for teaching primary school teachers how to integrate social studies into other content areas. This book is a comprehensive, reader-friendly text that demonstrates how personal connections can be incorporated into social studies education while meeting the National Council for the Social Studiese(tm) thematic, pedagogical, and disciplinary standards. Praised for its eoewealth of strategies that go beyond social studies teaching,e including classroom strategies, pedagogical techniques, activities and lesson plan ideas, this book examines a variety of methods both novice and experienced teachers alike can use to integrate social studies into other content areas.
  data science skills checklist: Data Cultures in Higher Education Juliana E. Raffaghelli, Albert Sangrà, 2023-03-07 This collection focuses on the role of higher education institutions concerning datafication as a complex phenomenon. It explores how the universities can develop data literac(ies) shaping tomorrow skills and “formae mentis” to face the most deleterious effects of datafication, but also to engage in creative and constructive ways with data. Notably, the book spots data practices within the two most relevant sides of academics’ professional practice, namely, research and teaching. Hence, the collection seeks to reflect on faculty’s professional learning about data infrastructures and practices. The book draws on a range of studies covering the higher education response to the several facets of data in society, from data surveillance and the algorithmic control of human behaviour to empowerment through the use of open data. The research reported ranges from literature overviews to multi-case and in-depth case studies illustrating institutional and educational responses to different problems connected to data. The ultimate intention is to provide conceptual bases and practical examples relating to universities’ faculty development policies to overcome data practices and discourses' fragmentation and contradictions: in a nutshell, to build “fair data cultures” in higher education.
  data science skills checklist: Resources in Education , 1998
  data science skills checklist: Strategies for Teaching Science Barbara Houtz, 2011-05-04 Support inquiry exploration with research-based strategies to develop scientific thinking. This resource provides model lessons, management techniques, and strategies to build students' real-world understanding of scientific concepts.
  data science skills checklist: Data Scientists at Work Sebastian Gutierrez, 2014-12-12 Data Scientists at Work is a collection of interviews with sixteen of the world's most influential and innovative data scientists from across the spectrum of this hot new profession. Data scientist is the sexiest job in the 21st century, according to the Harvard Business Review. By 2018, the United States will experience a shortage of 190,000 skilled data scientists, according to a McKinsey report. Through incisive in-depth interviews, this book mines the what, how, and why of the practice of data science from the stories, ideas, shop talk, and forecasts of its preeminent practitioners across diverse industries: social network (Yann LeCun, Facebook); professional network (Daniel Tunkelang, LinkedIn); venture capital (Roger Ehrenberg, IA Ventures); enterprise cloud computing and neuroscience (Eric Jonas, formerly Salesforce.com); newspaper and media (Chris Wiggins, The New York Times); streaming television (Caitlin Smallwood, Netflix); music forecast (Victor Hu, Next Big Sound); strategic intelligence (Amy Heineike, Quid); environmental big data (André Karpištšenko, Planet OS); geospatial marketing intelligence (Jonathan Lenaghan, PlaceIQ); advertising (Claudia Perlich, Dstillery); fashion e-commerce (Anna Smith, Rent the Runway); specialty retail (Erin Shellman, Nordstrom); email marketing (John Foreman, MailChimp); predictive sales intelligence (Kira Radinsky, SalesPredict); and humanitarian nonprofit (Jake Porway, DataKind). The book features a stimulating foreword by Google's Director of Research, Peter Norvig. Each of these data scientists shares how he or she tailors the torrent-taming techniques of big data, data visualization, search, and statistics to specific jobs by dint of ingenuity, imagination, patience, and passion. Data Scientists at Work parts the curtain on the interviewees’ earliest data projects, how they became data scientists, their discoveries and surprises in working with data, their thoughts on the past, present, and future of the profession, their experiences of team collaboration within their organizations, and the insights they have gained as they get their hands dirty refining mountains of raw data into objects of commercial, scientific, and educational value for their organizations and clients.
  data science skills checklist: Big Data-Enabled Nursing Connie W. Delaney, Charlotte A. Weaver, Judith J. Warren, Thomas R. Clancy, Roy L. Simpson, 2017-11-02 Historically, nursing, in all of its missions of research/scholarship, education and practice, has not had access to large patient databases. Nursing consequently adopted qualitative methodologies with small sample sizes, clinical trials and lab research. Historically, large data methods were limited to traditional biostatical analyses. In the United States, large payer data has been amassed and structures/organizations have been created to welcome scientists to explore these large data to advance knowledge discovery. Health systems electronic health records (EHRs) have now matured to generate massive databases with longitudinal trending. This text reflects how the learning health system infrastructure is maturing, and being advanced by health information exchanges (HIEs) with multiple organizations blending their data, or enabling distributed computing. It educates the readers on the evolution of knowledge discovery methods that span qualitative as well as quantitative data mining, including the expanse of data visualization capacities, are enabling sophisticated discovery. New opportunities for nursing and call for new skills in research methodologies are being further enabled by new partnerships spanning all sectors.
  data science skills checklist: Interactive Data Visualization for the Web Scott Murray, 2013-03-15 Create and publish your own interactive data visualization projects on the Web, even if you have no experience with either web development or data visualization. It’s easy with this hands-on guide. You’ll start with an overview of data visualization concepts and simple web technologies, and then learn how to use D3, a JavaScript library that lets you express data as visual elements in a web page. Interactive Data Visualization for the Web makes these skills available at an introductory level for designers and visual artists without programming experience, journalists interested in the emerging data journalism processes, and others keenly interested in visualization and publicly available data sources. Get a practical introduction to data visualization, accessible for beginners Focus on web-based tools that help you publish your creations quickly to a wide audience Learn about interactivity so you can engage users in exploring your data
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …