Data Science For Business And Decision Making

Advertisement



  data science for business and decision making: Data Science for Business and Decision Making Luiz Paulo Favero, Patricia Belfiore, 2019-04-11 Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®. - Combines statistics and operations research modeling to teach the principles of business analytics - Written for students who want to apply statistics, optimization and multivariate modeling to gain competitive advantages in business - Shows how powerful software packages, such as SPSS and Stata, can create graphical and numerical outputs
  data science for business and decision making: Data Science for Business and Decision Making Luiz Favero, Patrícia Belfiore, 2019-04-22 Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®.
  data science for business and decision making: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates
  data science for business and decision making: Business Analytics for Decision Making Steven Orla Kimbrough, Hoong Chuin Lau, 2018-09-03 Business Analytics for Decision Making, the first complete text suitable for use in introductory Business Analytics courses, establishes a national syllabus for an emerging first course at an MBA or upper undergraduate level. This timely text is mainly about model analytics, particularly analytics for constrained optimization. It uses implementations that allow students to explore models and data for the sake of discovery, understanding, and decision making. Business analytics is about using data and models to solve various kinds of decision problems. There are three aspects for those who want to make the most of their analytics: encoding, solution design, and post-solution analysis. This textbook addresses all three. Emphasizing the use of constrained optimization models for decision making, the book concentrates on post-solution analysis of models. The text focuses on computationally challenging problems that commonly arise in business environments. Unique among business analytics texts, it emphasizes using heuristics for solving difficult optimization problems important in business practice by making best use of methods from Computer Science and Operations Research. Furthermore, case studies and examples illustrate the real-world applications of these methods. The authors supply examples in Excel®, GAMS, MATLAB®, and OPL. The metaheuristics code is also made available at the book's website in a documented library of Python modules, along with data and material for homework exercises. From the beginning, the authors emphasize analytics and de-emphasize representation and encoding so students will have plenty to sink their teeth into regardless of their computer programming experience.
  data science for business and decision making: Data Science for Business and Decision Making: an Introductory Text for Students and Practitioners Seyed Ali Fallahchay, 2020-11 This book explores the principles underpinning data science. It considers the how and why of modern data science. The book goes further than existing books by applying data to decision making. Not only is the book useful for undergraduates, but it can also help business owners in improving their decision making. Using real life examples, this book explores the possibilities and limitations of an information-based decision making framework.
  data science for business and decision making: Real-world Data Mining Dursun Delen, 2015 As business becomes increasingly complex and global, decision-makers must act more rapidly and accurately, based on the best available evidence. Modern data mining and analytics is indispensable for doing this. Real-World Data Mining demystifies current best practices, showing how to use data mining and analytics to uncover hidden patterns and correlations, and leverage these to improve all business decision-making. Drawing on extensive experience as a researcher, practitioner, and instructor, Dr. Dursun Delen delivers an optimal balance of concepts, techniques and applications. Without compromising either simplicity or clarity, Delen provides enough technical depth to help readers truly understand how data mining technologies work. Coverage includes: data mining processes, methods, and techniques; the role and management of data; tools and metrics; text and web mining; sentiment analysis; and integration with cutting-edge Big Data approaches. Throughout, Delen's conceptual coverage is complemented with application case studies (examples of both successes and failures), as well as simple, hands-on tutorials.
  data science for business and decision making: Business Analytics S. Christian Albright, Wayne L. Winston, 2017
  data science for business and decision making: Customer and Business Analytics Daniel S. Putler, Robert E. Krider, 2012-05-07 Customer and Business Analytics: Applied Data Mining for Business Decision Making Using R explains and demonstrates, via the accompanying open-source software, how advanced analytical tools can address various business problems. It also gives insight into some of the challenges faced when deploying these tools. Extensively classroom-tested, the tex
  data science for business and decision making: Data Science and Multiple Criteria Decision Making Approaches in Finance Gökhan Silahtaroğlu, Hasan Dinçer, Serhat Yüksel, 2021-05-29 This book considers and assesses essential financial issues by utilizing data science and fuzzy multiple criteria decision making (MCDM) methods. It introduces readers to a range of data science methods, and demonstrates their application in the fields of business, health, economics, finance and engineering. In addition, it provides suggestions based on the assessment results on each topic, which can help to enhance the efficiency of the financial system and the sustainability of economic development. Given its scope, the book will help readers broaden their perspective on the assessment and evaluation of financial issues using data science and MCDM approaches.
  data science for business and decision making: Data Science for Economics and Finance Sergio Consoli, Diego Reforgiato Recupero, Michaela Saisana, 2021 This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications.
  data science for business and decision making: Management Decision-Making, Big Data and Analytics Simone Gressel, David J. Pauleen, Nazim Taskin, 2020-10-12 Accessible and concise, this exciting new textbook examines data analytics from a managerial and organizational perspective and looks at how they can help managers become more effective decision-makers. The book successfully combines theory with practical application, featuring case studies, examples and a ‘critical incidents’ feature that make these topics engaging and relevant for students of business and management. The book features chapters on cutting-edge topics, including: • Big data • Analytics • Managing emerging technologies and decision-making • Managing the ethics, security, privacy and legal aspects of data-driven decision-making The book is accompanied by an Instructor’s Manual, PowerPoint slides and access to journal articles. Suitable for management students studying business analytics and decision-making at undergraduate, postgraduate and MBA levels.
  data science for business and decision making: The Decision Maker's Handbook to Data Science Stylianos Kampakis, 2019-11-26 Data science is expanding across industries at a rapid pace, and the companies first to adopt best practices will gain a significant advantage. To reap the benefits, decision makers need to have a confident understanding of data science and its application in their organization. It is easy for novices to the subject to feel paralyzed by intimidating buzzwords, but what many don’t realize is that data science is in fact quite multidisciplinary—useful in the hands of business analysts, communications strategists, designers, and more. With the second edition of The Decision Maker’s Handbook to Data Science, you will learn how to think like a veteran data scientist and approach solutions to business problems in an entirely new way. Author Stylianos Kampakis provides you with the expertise and tools required to develop a solid data strategy that is continuously effective. Ethics and legal issues surrounding data collection and algorithmic bias are some common pitfalls that Kampakis helps you avoid, while guiding you on the path to build a thriving data science culture at your organization. This updated and revised second edition, includes plenty of case studies, tools for project assessment, and expanded content for hiring and managing data scientists Data science is a language that everyone at a modern company should understand across departments. Friction in communication arises most often when management does not connect with what a data scientist is doing or how impactful data collection and storage can be for their organization. The Decision Maker’s Handbook to Data Science bridges this gap and readies you for both the present and future of your workplace in this engaging, comprehensive guide. What You Will Learn Understand how data science can be used within your business. Recognize the differences between AI, machine learning, and statistics.Become skilled at thinking like a data scientist, without being one.Discover how to hire and manage data scientists.Comprehend how to build the right environment in order to make your organization data-driven. Who This Book Is For Startup founders, product managers, higher level managers, and any other non-technical decision makers who are thinking to implement data science in their organization and hire data scientists. A secondary audience includes people looking for a soft introduction into the subject of data science.
  data science for business and decision making: Decision Management Systems James Taylor, 2011-10-13 A very rich book sprinkled with real-life examples as well as battle-tested advice.” —Pierre Haren, VP ILOG, IBM James does a thorough job of explaining Decision Management Systems as enablers of a formidable business transformation.” —Deepak Advani, Vice President, Business Analytics Products and SPSS, IBM Build Systems That Work Actively to Help You Maximize Growth and Profits Most companies rely on operational systems that are largely passive. But what if you could make your systems active participants in optimizing your business? What if your systems could act intelligently on their own? Learn, not just report? Empower users to take action instead of simply escalating their problems? Evolve without massive IT investments? Decision Management Systems can do all that and more. In this book, the field’s leading expert demonstrates how to use them to drive unprecedented levels of business value. James Taylor shows how to integrate operational and analytic technologies to create systems that are more agile, more analytic, and more adaptive. Through actual case studies, you’ll learn how to combine technologies such as predictive analytics, optimization, and business rules—improving customer service, reducing fraud, managing risk, increasing agility, and driving growth. Both a practical how-to guide and a framework for planning, Decision Management Systems focuses on mainstream business challenges. Coverage includes Understanding how Decision Management Systems can transform your business Planning your systems “with the decision in mind” Identifying, modeling, and prioritizing the decisions you need to optimize Designing and implementing robust decision services Monitoring your ongoing decision-making and learning how to improve it Proven enablers of effective Decision Management Systems: people, process, and technology Identifying and overcoming obstacles that can derail your Decision Management Systems initiative
  data science for business and decision making: Business Statistics for Contemporary Decision Making Ignacio Castillo, Ken Black, Tiffany Bayley, 2023-05-08 Show students why business statistics is an increasingly important business skill through a student-friendly pedagogy. In this fourth Canadian edition of Business Statistics For Contemporary Decision Making authors Ken Black, Tiffany Bayley, and Ignacio Castillo uses current real-world data to equip students with the business analytics techniques and quantitative decision-making skills required to make smart decisions in today's workplace.
  data science for business and decision making: A Practitioner's Guide to Business Analytics (PB) Randy Bartlett, 2013-01-25 Gain the competitive edge with the smart use of business analytics In today’s volatile business environment, the strategic use of business analytics is more important than ever. A Practitioners Guide to Business Analytics helps you get the organizational commitment you need to get business analytics up and running in your company. It provides solutions for meeting the strategic challenges of applying analytics, such as: Integrating analytics into decision making, corporate culture, and business strategy Leading and organizing analytics within the corporation Applying statistical qualifications, statistical diagnostics, and statistical review Providing effective building blocks to support analytics—statistical software, data collection, and data management Randy Bartlett, Ph.D., is Chief Statistical Officer of the consulting company Blue Sigma Analytics. He currently works with Infosys, where he has helped build their new Business Analytics practice.
  data science for business and decision making: Getting Started with Business Analytics David Roi Hardoon, Galit Shmueli, 2013-03-26 Assuming no prior knowledge or technical skills, Getting Started with Business Analytics: Insightful Decision-Making explores the contents, capabilities, and applications of business analytics. It bridges the worlds of business and statistics and describes business analytics from a non-commercial standpoint. The authors demystify the main concepts and terminologies and give many examples of real-world applications. The first part of the book introduces business data and recent technologies that have promoted fact-based decision-making. The authors look at how business intelligence differs from business analytics. They also discuss the main components of a business analytics application and the various requirements for integrating business with analytics. The second part presents the technologies underlying business analytics: data mining and data analytics. The book helps you understand the key concepts and ideas behind data mining and shows how data mining has expanded into data analytics when considering new types of data such as network and text data. The third part explores business analytics in depth, covering customer, social, and operational analytics. Each chapter in this part incorporates hands-on projects based on publicly available data. Helping you make sound decisions based on hard data, this self-contained guide provides an integrated framework for data mining in business analytics. It takes you on a journey through this data-rich world, showing you how to deploy business analytics solutions in your organization.
  data science for business and decision making: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.
  data science for business and decision making: Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions Matt Taddy, 2019-08-23 Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling Understand how use ML tools in real world business problems, where causation matters more that correlation Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science.
  data science for business and decision making: Analytics at Work Thomas H. Davenport, Jeanne G. Harris, Robert Morison, 2010 As a follow-up to the successful Competing on Analytics, authors Tom Davenport, Jeanne Harris, and Robert Morison provide practical frameworks and tools for all companies that want to use analytics as a basis for more effective and more profitable decision making. Regardless of your company's strategy, and whether or not analytics are your company's primary source of competitive differentiation, this book is designed to help you assess your organization's analytical capabilities, provide the tools to build these capabilities, and put analytics to work. The book helps you answer these pressing questions: What assets do I need in place in my organization in order to use analytics to run my business? Once I have these assets, how do I deploy them to get the most from an analytic approach? How do I get an analytic initiative off the ground in the first place, and then how do I sustain analytics in my organization over time? Packed with tools, frameworks, and all new examples, Analytics at Work makes analytics understandable and accessible and teaches you how to make your company more analytical.
  data science for business and decision making: Business Intelligence Carlo Vercellis, 2011-08-10 Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
  data science for business and decision making: Information For Efficient Decision Making: Big Data, Blockchain And Relevance Kashi R Balachandran, 2020-11-19 Can there be reliable information that is also relevant to decision making? Information for Efficient Decision Making: Big Data, Blockchain and Relevance focuses on the consolidation of information to facilitate making decisions in firms, in order to make their operations efficient to reduce their costs and consequently, increase their profitability. The advent of blockchain has generated great interest as an alternative to centralized organizations, where the data is gathered through a centralized ledger keeping of activities of the firm. The decentralized ledger keeping is one of the main features of blockchain that has given rise to many issues of technology, development, implementation, privacy, acceptance, evaluation and so on. Blockchain concept is a follow-up to big data environment facilitated by enormous progress in computer hardware, storage capacities and technological prowess. This has resulted in the rapid acquiring of data not considered possible earlier. With shrewd modeling analytics and algorithms, the applications have grown to significant levels. This handbook discusses the progress in data collection, pros and cons of collecting information on decentralized publicly available ledgers and several applications.
  data science for business and decision making: Behind Every Good Decision Piyanka Jain, Puneet Sharma, 2014-11-05 There is a misconception in business that the only data that matters is BIG data, and that elaborate tools and data scientists are required to extract any practical information. However, nothing could be further from the truth. If you feel that you can’t understand how to read, let alone implement, these complex software programs that crunch the data and spit out more data, that will no longer be a problem! Authors and analytics experts Piyanka Jain and Puneet Sharma demystify the process of business analytics and demonstrate how professionals at any level can take the information at their disposal and in only five simple steps--using only Excel as a tool--make the decision necessary to increase revenue, decrease costs, improve product, or whatever else is being asked of them at that time. In Behind Every Good Decision, you will learn how to: Clarify the business question Lay out a hypothesis-driven plan Pull relevant data Convert it to insights Make decisions that make an impact Packed with examples and exercises, this refreshingly accessible book explains the four fundamental analytic techniques that can help solve a surprising 80 percent of all business problems. It doesn’t take a numbers person to know that is a formula you need!
  data science for business and decision making: Evidence-Based Decision-Making Andrew D. Banasiewicz, 2019-03-04 Evidence-Based Decision-Making: How to Leverage Available Data and Avoid Cognitive Biases examines how a wide range of factual evidence, primarily derived from a variety of data available to organizations, can be used to improve the quality of business decision-making, by helping decision makers circumvent the various cognitive biases that adversely impact how we all think. The book is built on the following premise: During the past decade, the new ‘data world’ emerged, in which the rush to develop competencies around business analytics and data science can be characterized as nothing less than the new commercial arms race. The ever-expanding volume and variety of data are well known, as are the great advances in data processing/analytics, data visualization, and related information production-focused capabilities. Yet, comparatively little effort has been devoted to how the informational products of business analytics and data science are ‘consumed’ or used in the organizational decision-making processes, as the available evidence shows that only some of that information is used to drive some business decisions some of the time. Evidence-Based Decision-Making details an explicit process describing how the universe of available and applicable evidence, which includes organizational and other data, industry benchmarks, scientific studies, and professional experience, can be assessed, amalgamated, and funneled into an objective driver of key business decisions. Introducing key concepts in relation to data and evidence, and the history of evidence-based management, this new and extremely topical book will be essential reading for researchers and students of data analytics as well as those working in the private and public sectors, and in the voluntary sector.
  data science for business and decision making: Data-based Decision Making in Education Kim Schildkamp, Mei Kuin Lai, Lorna Earl, 2012-09-18 In a context where schools are held more and more accountable for the education they provide, data-based decision making has become increasingly important. This book brings together scholars from several countries to examine data-based decision making. Data-based decision making in this book refers to making decisions based on a broad range of evidence, such as scores on students’ assessments, classroom observations etc. This book supports policy-makers, people working with schools, researchers and school leaders and teachers in the use of data, by bringing together the current research conducted on data use across multiple countries into a single volume. Some of these studies are ‘best practice’ studies, where effective data use has led to improvements in student learning. Others provide insight into challenges in both policy and practice environments. Each of them draws on research and literature in the field.
  data science for business and decision making: Data Science and Data Analytics Amit Kumar Tyagi, 2021-09-22 Data science is a multi-disciplinary field that uses scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured (labeled) and unstructured (unlabeled) data. It is the future of Artificial Intelligence (AI) and a necessity of the future to make things easier and more productive. In simple terms, data science is the discovery of data or uncovering hidden patterns (such as complex behaviors, trends, and inferences) from data. Moreover, Big Data analytics/data analytics are the analysis mechanisms used in data science by data scientists. Several tools, such as Hadoop, R, etc., are used to analyze this large amount of data to predict valuable information and for decision-making. Note that structured data can be easily analyzed by efficient (available) business intelligence tools, while most of the data (80% of data by 2020) is in an unstructured form that requires advanced analytics tools. But while analyzing this data, we face several concerns, such as complexity, scalability, privacy leaks, and trust issues. Data science helps us to extract meaningful information or insights from unstructured or complex or large amounts of data (available or stored virtually in the cloud). Data Science and Data Analytics: Opportunities and Challenges covers all possible areas, applications with arising serious concerns, and challenges in this emerging field in detail with a comparative analysis/taxonomy. FEATURES Gives the concept of data science, tools, and algorithms that exist for many useful applications Provides many challenges and opportunities in data science and data analytics that help researchers to identify research gaps or problems Identifies many areas and uses of data science in the smart era Applies data science to agriculture, healthcare, graph mining, education, security, etc. Academicians, data scientists, and stockbrokers from industry/business will find this book useful for designing optimal strategies to enhance their firm’s productivity.
  data science for business and decision making: Decision Behaviour, Analysis and Support Simon French, John Maule, Nadia Papamichail, 2009-07-30 A multi-disciplinary exploration of how we can help decision makers to deliberate and make better decisions.
  data science for business and decision making: Analytics, Data Science, and Artificial Intelligence Ramesh Sharda, Dursun Delen, Efraim Turban, 2020-03-06 For courses in decision support systems, computerized decision-making tools, and management support systems. Market-leading guide to modern analytics, for better business decisionsAnalytics, Data Science, & Artificial Intelligence: Systems for Decision Support is the most comprehensive introduction to technologies collectively called analytics (or business analytics) and the fundamental methods, techniques, and software used to design and develop these systems. Students gain inspiration from examples of organisations that have employed analytics to make decisions, while leveraging the resources of a companion website. With six new chapters, the 11th edition marks a major reorganisation reflecting a new focus -- analytics and its enabling technologies, including AI, machine-learning, robotics, chatbots, and IoT.
  data science for business and decision making: Application of Decision Science in Business and Management Fausto Pedro García Márquez, 2020-03-04 Application of Decision Science in Business and Management is a book where each chapter has been contributed by a different author(s). The chapters introduce and demonstrate a decision-making theory to practice case studies. It demonstrates key results for each sector with diverse real-world case studies. Theory is accompanied by relevant analysis techniques, with a progressive approach building from simple theory to complex and dynamic decisions with multiple data points, including big data, lot of data, etc. Computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques are expertly blended to support analysis of multi-criteria decision-making problems with defined constraints and requirements. The book provides an interface between the main disciplines of engineering/technology and the organizational, administrative, and planning abilities of decision making. It is complementary to other sub-disciplines such as economics, finance, marketing, decision and risk analysis, etc.
  data science for business and decision making: The Economics of Data, Analytics, and Digital Transformation Bill Schmarzo, Dr. Kirk Borne, 2020-11-30 Build a continuously learning and adapting organization that can extract increasing levels of business, customer and operational value from the amalgamation of data and advanced analytics such as AI and Machine Learning Key Features Master the Big Data Business Model Maturity Index methodology to transition to a value-driven organizational mindset Acquire implementable knowledge on digital transformation through 8 practical laws Explore the economics behind digital assets (data and analytics) that appreciate in value when constructed and deployed correctly Book Description In today's digital era, every organization has data, but just possessing enormous amounts of data is not a sufficient market discriminator. The Economics of Data, Analytics, and Digital Transformation aims to provide actionable insights into the real market discriminators, including an organization's data-fueled analytics products that inspire innovation, deliver insights, help make practical decisions, generate value, and produce mission success for the enterprise. The book begins by first building your mindset to be value-driven and introducing the Big Data Business Model Maturity Index, its maturity index phases, and how to navigate the index. You will explore value engineering, where you will learn how to identify key business initiatives, stakeholders, advanced analytics, data sources, and instrumentation strategies that are essential to data science success. The book will help you accelerate and optimize your company's operations through AI and machine learning. By the end of the book, you will have the tools and techniques to drive your organization's digital transformation. Here are a few words from Dr. Kirk Borne, Data Scientist and Executive Advisor at Booz Allen Hamilton, about the book: Data analytics should first and foremost be about action and value. Consequently, the great value of this book is that it seeks to be actionable. It offers a dynamic progression of purpose-driven ignition points that you can act upon. What you will learn Train your organization to transition from being data-driven to being value-driven Navigate and master the big data business model maturity index Learn a methodology for determining the economic value of your data and analytics Understand how AI and machine learning can create analytics assets that appreciate in value the more that they are used Become aware of digital transformation misconceptions and pitfalls Create empowered and dynamic teams that fuel your organization's digital transformation Who this book is for This book is designed to benefit everyone from students who aspire to study the economic fundamentals behind data and digital transformation to established business leaders and professionals who want to learn how to leverage data and analytics to accelerate their business careers.
  data science for business and decision making: Research Methods and Data Analysis for Business Decisions James E. Sallis, Geir Gripsrud, Ulf Henning Olsson, Ragnhild Silkoset, 2021-10-30 This introductory textbook presents research methods and data analysis tools in non-technical language. It explains the research process and the basics of qualitative and quantitative data analysis, including procedures and methods, analysis, interpretation, and applications using hands-on data examples in QDA Miner Lite and IBM SPSS Statistics software. The book is divided into four parts that address study and research design; data collection, qualitative methods and surveys; statistical methods, including hypothesis testing, regression, cluster and factor analysis; and reporting. The intended audience is business and social science students learning scientific research methods, however, given its business context, the book will be equally useful for decision-makers in businesses and organizations.
  data science for business and decision making: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
  data science for business and decision making: Business Analytics, Volume I Amar Sahay, 2018-08-23 Business Analytics: A Data-Driven Decision Making Approach for Business-Part I,/i> provides an overview of business analytics (BA), business intelligence (BI), and the role and importance of these in the modern business decision-making. The book discusses all these areas along with three main analytics categories: (1) descriptive, (2) predictive, and (3) prescriptive analytics with their tools and applications in business. This volume focuses on descriptive analytics that involves the use of descriptive and visual or graphical methods, numerical methods, as well as data analysis tools, big data applications, and the use of data dashboards to understand business performance. The highlights of this volume are: Business analytics at a glance; Business intelligence (BI), data analytics; Data, data types, descriptive analytics; Data visualization tools; Data visualization with big data; Descriptive analytics-numerical methods; Case analysis with computer applications.
  data science for business and decision making: Statistics for Business Robert Stine, Dean Foster, 2015-08-17 In Statistics for Business: Decision Making and Analysis, authors Robert Stine and Dean Foster of the University of Pennsylvania’s Wharton School, take a sophisticated approach to teaching statistics in the context of making good business decisions. The authors show students how to recognize and understand each business question, use statistical tools to do the analysis, and how to communicate their results clearly and concisely. In addition to providing cases and real data to demonstrate real business situations, this text provides resources to support understanding and engagement. A successful problem-solving framework in the 4-M Examples (Motivation, Method, Mechanics, Message) model a clear outline for solving problems, new What Do You Think questions give students an opportunity to stop and check their understanding as they read, and new learning objectives guide students through each chapter and help them to review major goals. Software Hints provide instructions for using the most up-to-date technology packages. The Second Edition also includes expanded coverage and instruction of Excel® 2010.
  data science for business and decision making: The Sentient Enterprise Oliver Ratzesberger, Mohanbir Sawhney, 2017-09-06 Mohan and Oliver have been very fortunate to have intimate views into the data challenges that face the largest organizations and institutions across every possible industry—and what they have been hearing about for some time is how the business needs to use data and analytics to their advantage. They continually hear the same issues, such as: We're spending valuable meeting time wondering why everyone's data doesn't match up. We can't leverage our economies of scale while remaining agile with data. We need self-serve apps that let the enterprise experiment with data and accelerate the development process. We need to get on a more predictive curve to ensure long-term success. To really address the data concerns of today's enterprise, they wanted to find a way to help enterprises achieve the success they seek. Not as a prescriptive process—but a methodology to become agile and leverage data and analytics to drive a competitive advantage. You know, it's amazing what can happen when two people with very different perspectives get together to solve a big problem. This evolutionary guide resulted from the a-ha moment between these two influencers at the top of their fields—one, an academic researcher and consultant, and the other, a longtime analytics practitioner and chief product officer at Teradata. Together, they created a powerful framework every type of business can use to connect analytic power, business practices, and human dynamics in ways that can transform what is currently possible.
  data science for business and decision making: Data Science for Decision Makers & Data Professionals Eric Van Der Steen, 2021-03-15 Learn how to embed data science, Big Data and AI in your organization's decision-making process and make your organization more data-driven, profitable, and intelligent in 10 steps. Book description This book covers every aspect of the implementation of data science, from the algorithms that make your decisions more refined, effective and faster to the people, skills, culture, and mindset required to make it happen. How do you set the right KPIs and targets? How are the best data-driven organizations structured? Why do you need a data warehouse or data lake? How do you manage a data science project? This book tackles every question relevant to implementing data science. Many organizations start by collecting data without a goal, but that data science approach is doomed to fail. This book takes you through the process of implementing data science from the ground floor all the way to the top. It all starts with the question: what do we want to achieve? It covers all the subsequent steps on a macro and micro level, from the process of registering data, to processing it, to the organization's response. All the relevant data science techniques and technologies are discussed, from algorithms and AI to the right management strategies. Based on many practical case studies and best practices, this book reveals what works and what doesn't. Benefit from the author's many years of experience in making organizations more intelligent and data-driven as a consultant and an educator. What you will learn - The most important benefits of data science. - The essential aspects of decision making and the role of data science. - How to determine the right KPIs and use them to manage effectively. - How to turn data into knowledge and information. - How to make your organization more agile. - The many types of algorithms that can be used to make more effective decisions on every level. - How to manage data science projects - who and what do you need to effectively implement data science? - How to design a data science roadmap. - And much, much more. Who is this book for This book is for every manager or professional, and all those who want to learn how to embed the effective use of data science in every facet of the organization. This comprehensive management handbook is a must-read for (business) consultants, business managers, Chief Data Officers (CDOs), CIOs, and other executives, project managers, Data Science consultants, Data Scientists, AI consultants, (business) controllers, quality managers, and BI consultants.
  data science for business and decision making: Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing Singh, Amandeep, 2021-06-18 The availability of big data, low-cost commodity hardware, and new information management and analytic software have produced a unique moment in the history of data analysis. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue, and profitability especially in digital marketing. Data plays a huge role in understanding valuable insights about target demographics and customer preferences. From every interaction with technology, regardless of whether it is active or passive, we are creating new data that can describe us. If analyzed correctly, these data points can explain a lot about our behavior, personalities, and life events. Companies can leverage these insights for product improvements, business strategy, and marketing campaigns to cater to the target customers. Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing aids understanding of big data in terms of digital marketing for meaningful analysis of information that can improve marketing efforts and strategies using the latest digital techniques. The chapters cover a wide array of essential marketing topics and techniques, including search engine marketing, consumer behavior, social media marketing, online advertising, and how they interact with big data. This book is essential for professionals and researchers working in the field of analytics, data, and digital marketing, along with marketers, advertisers, brand managers, social media specialists, managers, sales professionals, practitioners, researchers, academicians, and students looking for the latest information on how big data is being used in digital marketing strategies.
  data science for business and decision making: Transforming Teaching and Learning Through Data-Driven Decision Making Ellen B. Mandinach, Sharnell S. Jackson, 2012-04-10 Gathering data and using it to inform instruction is a requirement for many schools, yet educators are not necessarily formally trained in how to do it. This book helps bridge the gap between classroom practice and the principles of educational psychology. Teachers will find cutting-edge advances in research and theory on human learning and teaching in an easily understood and transferable format. The text's integrated model shows teachers, school leaders, and district administrators how to establish a data culture and transform quantitative and qualitative data into actionable knowledge based on: assessment; statistics; instructional and differentiated psychology; classroom management.--Publisher's description.
  data science for business and decision making: HBR Guide to Data Analytics Basics for Managers (HBR Guide Series) Harvard Business Review, 2018-03-13 Don't let a fear of numbers hold you back. Today's business environment brings with it an onslaught of data. Now more than ever, managers must know how to tease insight from data--to understand where the numbers come from, make sense of them, and use them to inform tough decisions. How do you get started? Whether you're working with data experts or running your own tests, you'll find answers in the HBR Guide to Data Analytics Basics for Managers. This book describes three key steps in the data analysis process, so you can get the information you need, study the data, and communicate your findings to others. You'll learn how to: Identify the metrics you need to measure Run experiments and A/B tests Ask the right questions of your data experts Understand statistical terms and concepts Create effective charts and visualizations Avoid common mistakes
  data science for business and decision making: Ethics of Data and Analytics Kirsten Martin, 2022-05-12 The ethics of data and analytics, in many ways, is no different than any endeavor to find the right answer. When a business chooses a supplier, funds a new product, or hires an employee, managers are making decisions with moral implications. The decisions in business, like all decisions, have a moral component in that people can benefit or be harmed, rules are followed or broken, people are treated fairly or not, and rights are enabled or diminished. However, data analytics introduces wrinkles or moral hurdles in how to think about ethics. Questions of accountability, privacy, surveillance, bias, and power stretch standard tools to examine whether a decision is good, ethical, or just. Dealing with these questions requires different frameworks to understand what is wrong and what could be better. Ethics of Data and Analytics: Concepts and Cases does not search for a new, different answer or to ban all technology in favor of human decision-making. The text takes a more skeptical, ironic approach to current answers and concepts while identifying and having solidarity with others. Applying this to the endeavor to understand the ethics of data and analytics, the text emphasizes finding multiple ethical approaches as ways to engage with current problems to find better solutions rather than prioritizing one set of concepts or theories. The book works through cases to understand those marginalized by data analytics programs as well as those empowered by them. Three themes run throughout the book. First, data analytics programs are value-laden in that technologies create moral consequences, reinforce or undercut ethical principles, and enable or diminish rights and dignity. This places an additional focus on the role of developers in their incorporation of values in the design of data analytics programs. Second, design is critical. In the majority of the cases examined, the purpose is to improve the design and development of data analytics programs. Third, data analytics, artificial intelligence, and machine learning are about power. The discussion of power—who has it, who gets to keep it, and who is marginalized—weaves throughout the chapters, theories, and cases. In discussing ethical frameworks, the text focuses on critical theories that question power structures and default assumptions and seek to emancipate the marginalized.
  data science for business and decision making: Big Data, Mining, and Analytics Stephan Kudyba, 2014-03-12 This book ties together big data, data mining, and analytics to explain how readers can leverage them to transform their business strategy. Illustrating basic approaches of business intelligence to data and text mining, the book guides readers through the process of extracting valuable knowledge from the varieties of data currently being generated in the brick and mortar and Internet environments. It considers the broad spectrum of analytics approaches for decision making, including dashboards, OLAP cubes, data mining, and text mining.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues …

Belmont Forum Adopts Open Data Principles for Environme…
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to …

Belmont Forum Data Accessibility Statement an…
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their …