Advertisement
data science in pharma: The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry Stephanie K. Ashenden, 2021-04-23 The Era of Artificial Intelligence, Machine Learning and Data Science in the Pharmaceutical Industry examines the drug discovery process, assessing how new technologies have improved effectiveness. Artificial intelligence and machine learning are considered the future for a wide range of disciplines and industries, including the pharmaceutical industry. In an environment where producing a single approved drug costs millions and takes many years of rigorous testing prior to its approval, reducing costs and time is of high interest. This book follows the journey that a drug company takes when producing a therapeutic, from the very beginning to ultimately benefitting a patient's life. This comprehensive resource will be useful to those working in the pharmaceutical industry, but will also be of interest to anyone doing research in chemical biology, computational chemistry, medicinal chemistry and bioinformatics. - Demonstrates how the prediction of toxic effects is performed, how to reduce costs in testing compounds, and its use in animal research - Written by the industrial teams who are conducting the work, showcasing how the technology has improved and where it should be further improved - Targets materials for a better understanding of techniques from different disciplines, thus creating a complete guide |
data science in pharma: Trends and Innovations in Information Systems and Technologies Álvaro Rocha, Hojjat Adeli, Luís Paulo Reis, Sandra Costanzo, Irena Orovic, Fernando Moreira, 2020-05-18 This book gathers selected papers presented at the 2020 World Conference on Information Systems and Technologies (WorldCIST’20), held in Budva, Montenegro, from April 7 to 10, 2020. WorldCIST provides a global forum for researchers and practitioners to present and discuss recent results and innovations, current trends, professional experiences with and challenges regarding various aspects of modern information systems and technologies. The main topics covered are A) Information and Knowledge Management; B) Organizational Models and Information Systems; C) Software and Systems Modeling; D) Software Systems, Architectures, Applications and Tools; E) Multimedia Systems and Applications; F) Computer Networks, Mobility and Pervasive Systems; G) Intelligent and Decision Support Systems; H) Big Data Analytics and Applications; I) Human–Computer Interaction; J) Ethics, Computers & Security; K) Health Informatics; L) Information Technologies in Education; M) Information Technologies in Radiocommunications; and N) Technologies for Biomedical Applications. |
data science in pharma: Healthcare Data Analytics Chandan K. Reddy, Charu C. Aggarwal, 2015-06-23 At the intersection of computer science and healthcare, data analytics has emerged as a promising tool for solving problems across many healthcare-related disciplines. Supplying a comprehensive overview of recent healthcare analytics research, Healthcare Data Analytics provides a clear understanding of the analytical techniques currently available |
data science in pharma: Multivariate Analysis in the Pharmaceutical Industry Ana Patricia Ferreira, Jose C. Menezes, Mike Tobyn, 2018-04-24 Multivariate Analysis in the Pharmaceutical Industry provides industry practitioners with guidance on multivariate data methods and their applications over the lifecycle of a pharmaceutical product, from process development, to routine manufacturing, focusing on the challenges specific to each step. It includes an overview of regulatory guidance specific to the use of these methods, along with perspectives on the applications of these methods that allow for testing, monitoring and controlling products and processes. The book seeks to put multivariate analysis into a pharmaceutical context for the benefit of pharmaceutical practitioners, potential practitioners, managers and regulators. Users will find a resources that addresses an unmet need on how pharmaceutical industry professionals can extract value from data that is routinely collected on products and processes, especially as these techniques become more widely used, and ultimately, expected by regulators. - Targets pharmaceutical industry practitioners and regulatory staff by addressing industry specific challenges - Includes case studies from different pharmaceutical companies and across product lifecycle of to introduce readers to the breadth of applications - Contains information on the current regulatory framework which will shape how multivariate analysis (MVA) is used in years to come |
data science in pharma: Lattice Deepayan Sarkar, 2008-02-15 Written by the author of the lattice system, this book describes lattice in considerable depth, beginning with the essentials and systematically delving into specific low levels details as necessary. No prior experience with lattice is required to read the book, although basic familiarity with R is assumed. The book contains close to 150 figures produced with lattice. Many of the examples emphasize principles of good graphical design; almost all use real data sets that are publicly available in various R packages. All code and figures in the book are also available online, along with supplementary material covering more advanced topics. |
data science in pharma: GAMP 5 Sion Wyn, 2008 GAMP 5 provides pragmatic and practical industry guidance to achieve compliant computerized systems fit for intended use in an efficient and effective manner. This technical document describes a flexible risk-based approach to compliant GxP regulated computerized systems, based on scalable specification and verification. It points to the future of computer systems compliance by centering on principles behind major industry developments such as PQLI; ICH Q8, Q9, Q10; and ASTM E2500. This revolutionary Guide addresses the entire lifecycle of an automated system and its applicability to a wide range of information systems, lab equipment, integrated manufacturing systems, and IT infrastructures. It contains new information on outsourcing, electronic batch recording, end user applications (such as spreadsheets and small database applications), and patch management. |
data science in pharma: Bad Pharma Ben Goldacre, 2014-04 Originally published in 2012, revised edition published in 2013, by Fourth Estate, Great Britain; Published in the United States in 2012, revised edition also, by Faber and Faber, Inc. |
data science in pharma: Data Science, AI, and Machine Learning in Drug Development Harry Yang, 2022-10-04 The confluence of big data, artificial intelligence (AI), and machine learning (ML) has led to a paradigm shift in how innovative medicines are developed and healthcare delivered. To fully capitalize on these technological advances, it is essential to systematically harness data from diverse sources and leverage digital technologies and advanced analytics to enable data-driven decisions. Data science stands at a unique moment of opportunity to lead such a transformative change. Intended to be a single source of information, Data Science, AI, and Machine Learning in Drug Research and Development covers a wide range of topics on the changing landscape of drug R & D, emerging applications of big data, AI and ML in drug development, and the build of robust data science organizations to drive biopharmaceutical digital transformations. Features Provides a comprehensive review of challenges and opportunities as related to the applications of big data, AI, and ML in the entire spectrum of drug R & D Discusses regulatory developments in leveraging big data and advanced analytics in drug review and approval Offers a balanced approach to data science organization build Presents real-world examples of AI-powered solutions to a host of issues in the lifecycle of drug development Affords sufficient context for each problem and provides a detailed description of solutions suitable for practitioners with limited data science expertise |
data science in pharma: Pharmaceutical Sales Data 101 Kosta Tzavaras, 2003 |
data science in pharma: Artificial Intelligence in Drug Discovery Nathan Brown, 2020-11-04 Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia. |
data science in pharma: Fundamentals of Clinical Data Science Pieter Kubben, Michel Dumontier, Andre Dekker, 2018-12-21 This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience. |
data science in pharma: Sharing Clinical Trial Data Institute of Medicine, Board on Health Sciences Policy, Committee on Strategies for Responsible Sharing of Clinical Trial Data, 2015-04-20 Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients. |
data science in pharma: Essential Statistics for the Pharmaceutical Sciences Philip Rowe, 2015-07-20 Essential Statistics for the Pharmaceutical Sciences is targeted at all those involved in research in pharmacology, pharmacy or other areas of pharmaceutical science; everybody from undergraduate project students to experienced researchers should find the material they need. This book will guide all those who are not specialist statisticians in using sound statistical principles throughout the whole journey of a research project - designing the work, selecting appropriate statistical methodology and correctly interpreting the results. It deliberately avoids detailed calculation methodology. Its key features are friendliness and clarity. All methods are illustrated with realistic examples from within pharmaceutical science. This edition now includes expanded coverage of some of the topics included in the first edition and adds some new topics relevant to pharmaceutical research. a clear, accessible introduction to the key statistical techniques used within the pharmaceutical sciences all examples set in relevant pharmaceutical contexts. key points emphasised in summary boxes and warnings of potential abuses in ‘pirate boxes’. supplementary material - full data sets and detailed instructions for carrying out analyses using packages such as SPSS or Minitab – provided at: https://www.wiley.com/go/rowe/statspharmascience2e An invaluable introduction to statistics for any science student and an essential text for all those involved in pharmaceutical research at whatever level. |
data science in pharma: Artificial Intelligence in Healthcare Adam Bohr, Kaveh Memarzadeh, 2020-06-21 Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data |
data science in pharma: Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare Mark Chang, 2020-05-12 Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare covers exciting developments at the intersection of computer science and statistics. While much of machine-learning is statistics-based, achievements in deep learning for image and language processing rely on computer science’s use of big data. Aimed at those with a statistical background who want to use their strengths in pursuing AI research, the book: · Covers broad AI topics in drug development, precision medicine, and healthcare. · Elaborates on supervised, unsupervised, reinforcement, and evolutionary learning methods. · Introduces the similarity principle and related AI methods for both big and small data problems. · Offers a balance of statistical and algorithm-based approaches to AI. · Provides examples and real-world applications with hands-on R code. · Suggests the path forward for AI in medicine and artificial general intelligence. As well as covering the history of AI and the innovative ideas, methodologies and software implementation of the field, the book offers a comprehensive review of AI applications in medical sciences. In addition, readers will benefit from hands on exercises, with included R code. |
data science in pharma: Statistical Design and Analysis in Pharmaceutical Science Shein-Chung Chow, Jen-pei Liu, 2018-10-03 Offers a comprehensive, unified presentation of statistical designs and methods of analysis for all stages of pharmaceutical development--emphasizing biopharmaceutical applications and demonstrating statistical techniques with real-world examples. |
data science in pharma: Applications of Machine Learning Prashant Johri, Jitendra Kumar Verma, Sudip Paul, 2020-05-04 This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics. |
data science in pharma: Approaching (Almost) Any Machine Learning Problem Abhishek Thakur, 2020-07-04 This is not a traditional book. The book has a lot of code. If you don't like the code first approach do not buy this book. Making code available on Github is not an option. This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along. Table of contents: - Setting up your working environment - Supervised vs unsupervised learning - Cross-validation - Evaluation metrics - Arranging machine learning projects - Approaching categorical variables - Feature engineering - Feature selection - Hyperparameter optimization - Approaching image classification & segmentation - Approaching text classification/regression - Approaching ensembling and stacking - Approaching reproducible code & model serving There are no sub-headings. Important terms are written in bold. I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, visit this link: https://bit.ly/aamlquestions And Subscribe to my youtube channel: https://bit.ly/abhitubesub |
data science in pharma: Data Analytics in Bioinformatics Rabinarayan Satpathy, Tanupriya Choudhury, Suneeta Satpathy, Sachi Nandan Mohanty, Xiaobo Zhang, 2021-01-20 Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more. |
data science in pharma: Healthcare Analytics Made Simple Vikas (Vik) Kumar, 2018-07-31 Add a touch of data analytics to your healthcare systems and get insightful outcomes Key Features Perform healthcare analytics with Python and SQL Build predictive models on real healthcare data with pandas and scikit-learn Use analytics to improve healthcare performance Book Description In recent years, machine learning technologies and analytics have been widely utilized across the healthcare sector. Healthcare Analytics Made Simple bridges the gap between practising doctors and data scientists. It equips the data scientists’ work with healthcare data and allows them to gain better insight from this data in order to improve healthcare outcomes. This book is a complete overview of machine learning for healthcare analytics, briefly describing the current healthcare landscape, machine learning algorithms, and Python and SQL programming languages. The step-by-step instructions teach you how to obtain real healthcare data and perform descriptive, predictive, and prescriptive analytics using popular Python packages such as pandas and scikit-learn. The latest research results in disease detection and healthcare image analysis are reviewed. By the end of this book, you will understand how to use Python for healthcare data analysis, how to import, collect, clean, and refine data from electronic health record (EHR) surveys, and how to make predictive models with this data through real-world algorithms and code examples. What you will learn Gain valuable insight into healthcare incentives, finances, and legislation Discover the connection between machine learning and healthcare processes Use SQL and Python to analyze data Measure healthcare quality and provider performance Identify features and attributes to build successful healthcare models Build predictive models using real-world healthcare data Become an expert in predictive modeling with structured clinical data See what lies ahead for healthcare analytics Who this book is for Healthcare Analytics Made Simple is for you if you are a developer who has a working knowledge of Python or a related programming language, although you are new to healthcare or predictive modeling with healthcare data. Clinicians interested in analytics and healthcare computing will also benefit from this book. This book can also serve as a textbook for students enrolled in an introductory course on machine learning for healthcare. |
data science in pharma: Business Intelligence Demystified Anoop Kumar V K, 2021-09-25 Clear your doubts about Business Intelligence and start your new journey KEY FEATURES ● Includes successful methods and innovative ideas to achieve success with BI. ● Vendor-neutral, unbiased, and based on experience. ● Highlights practical challenges in BI journeys. ● Covers financial aspects along with technical aspects. ● Showcases multiple BI organization models and the structure of BI teams. DESCRIPTION The book demystifies misconceptions and misinformation about BI. It provides clarity to almost everything related to BI in a simplified and unbiased way. It covers topics right from the definition of BI, terms used in the BI definition, coinage of BI, details of the different main uses of BI, processes that support the main uses, side benefits, and the level of importance of BI, various types of BI based on various parameters, main phases in the BI journey and the challenges faced in each of the phases in the BI journey. It clarifies myths about self-service BI and real-time BI. The book covers the structure of a typical internal BI team, BI organizational models, and the main roles in BI. It also clarifies the doubts around roles in BI. It explores the different components that add to the cost of BI and explains how to calculate the total cost of the ownership of BI and ROI for BI. It covers several ideas, including unconventional ideas to achieve BI success and also learn about IBI. It explains the different types of BI architectures, commonly used technologies, tools, and concepts in BI and provides clarity about the boundary of BI w.r.t technologies, tools, and concepts. The book helps you lay a very strong foundation and provides the right perspective about BI. It enables you to start or restart your journey with BI. WHAT YOU WILL LEARN ● Builds a strong conceptual foundation in BI. ● Gives the right perspective and clarity on BI uses, challenges, and architectures. ● Enables you to make the right decisions on the BI structure, organization model, and budget. ● Explains which type of BI solution is required for your business. ● Applies successful BI ideas. WHO THIS BOOK IS FOR This book is a must-read for business managers, BI aspirants, CxOs, and all those who want to drive the business value with data-driven insights. TABLE OF CONTENTS 1. What is Business Intelligence? 2. Why do Businesses need BI? 3. Types of Business Intelligence 4. Challenges in Business Intelligence 5. Roles in Business Intelligence 6. Financials of Business Intelligence 7. Ideas for Success with BI 8. Introduction to IBI 9. BI Architectures 10. Demystify Tech, Tools, and Concepts in BI |
data science in pharma: Mastering Shiny Hadley Wickham, 2021-04-29 Master the Shiny web framework—and take your R skills to a whole new level. By letting you move beyond static reports, Shiny helps you create fully interactive web apps for data analyses. Users will be able to jump between datasets, explore different subsets or facets of the data, run models with parameter values of their choosing, customize visualizations, and much more. Hadley Wickham from RStudio shows data scientists, data analysts, statisticians, and scientific researchers with no knowledge of HTML, CSS, or JavaScript how to create rich web apps from R. This in-depth guide provides a learning path that you can follow with confidence, as you go from a Shiny beginner to an expert developer who can write large, complex apps that are maintainable and performant. Get started: Discover how the major pieces of a Shiny app fit together Put Shiny in action: Explore Shiny functionality with a focus on code samples, example apps, and useful techniques Master reactivity: Go deep into the theory and practice of reactive programming and examine reactive graph components Apply best practices: Examine useful techniques for making your Shiny apps work well in production |
data science in pharma: Forecasting for the Pharmaceutical Industry Arthur G. Cook, 2016-03-03 Forecasting for the Pharmaceutical Industry is a definitive guide for forecasters as well as the multitude of decision makers and executives who rely on forecasts in their decision making. In virtually every decision, a pharmaceutical executive considers some type of forecast. This process of predicting the future is crucial to many aspects of the company - from next month's production schedule, to market estimates for drugs in the next decade. The pharmaceutical forecaster needs to strike a delicate balance between over-engineering the forecast - including rafts of data and complex ’black box’ equations that few stakeholders understand and even fewer buy into - and an overly simplistic approach that relies too heavily on anecdotal information and opinion. Arthur G. Cook's highly pragmatic guide explains the basis of a successful balanced forecast for products in development as well as currently marketed products. The author explores the pharmaceutical forecasting process; the varied tools and methods for new product and in-market forecasting; how they can be used to communicate market dynamics to the various stakeholders; and the strengths and weaknesses of different forecast approaches. The text is liberally illustrated with tables, diagrams and examples. The final extended case study provides the reader with an opportunity to test out their knowledge. The second edition has been updated throughout and includes a brand new chapter focusing on specialized topics such as forecasting for orphan drugs and biosimilars. |
data science in pharma: Open Source Software in Life Science Research Lee Harland, Mark Forster, 2012-10-31 The free/open source approach has grown from a minor activity to become a significant producer of robust, task-orientated software for a wide variety of situations and applications. To life science informatics groups, these systems present an appealing proposition - high quality software at a very attractive price. Open source software in life science research considers how industry and applied research groups have embraced these resources, discussing practical implementations that address real-world business problems.The book is divided into four parts. Part one looks at laboratory data management and chemical informatics, covering software such as Bioclipse, OpenTox, ImageJ and KNIME. In part two, the focus turns to genomics and bioinformatics tools, with chapters examining GenomicsTools and EBI Atlas software, as well as the practicalities of setting up an 'omics' platform and managing large volumes of data. Chapters in part three examine information and knowledge management, covering a range of topics including software for web-based collaboration, open source search and visualisation technologies for scientific business applications, and specific software such as DesignTracker and Utopia Documents. Part four looks at semantic technologies such as Semantic MediaWiki, TripleMap and Chem2Bio2RDF, before part five examines clinical analytics, and validation and regulatory compliance of free/open source software. Finally, the book concludes by looking at future perspectives and the economics and free/open source software in industry. - Discusses a broad range of applications from a variety of sectors - Provides a unique perspective on work normally performed behind closed doors - Highlights the criteria used to compare and assess different approaches to solving problems |
data science in pharma: Introduction to the Pharmaceutical Sciences Nita K. Pandit, 2007 This unique textbook provides an introductory, yet comprehensive overview of the pharmaceutical sciences. It is the first text of its kind to pursue an interdisciplinary approach in this area of study. Readers are introduced to basic concepts related to the specific disciplines in the pharmaceutical sciences, including pharmacology, pharmaceutics, pharmacokinetics, and medicinal chemistry. In an easy-to-read writing style, the book provides readers with up-to-date information on pharmacogenomics and includes comprehensive coverage of industrial drug development and regulatory approval processes. Each chapter includes chapter outlines and critical-thinking exercises, as well as numerous tables and graphs. More than 160 illustrations complement the text. |
data science in pharma: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians. |
data science in pharma: Hands-On Data Science with R Vitor Bianchi Lanzetta, Nataraj Dasgupta, Ricardo Anjoleto Farias, 2018-11-30 A hands-on guide for professionals to perform various data science tasks in R Key FeaturesExplore the popular R packages for data scienceUse R for efficient data mining, text analytics and feature engineeringBecome a thorough data science professional with the help of hands-on examples and use-cases in RBook Description R is the most widely used programming language, and when used in association with data science, this powerful combination will solve the complexities involved with unstructured datasets in the real world. This book covers the entire data science ecosystem for aspiring data scientists, right from zero to a level where you are confident enough to get hands-on with real-world data science problems. The book starts with an introduction to data science and introduces readers to popular R libraries for executing data science routine tasks. This book covers all the important processes in data science such as data gathering, cleaning data, and then uncovering patterns from it. You will explore algorithms such as machine learning algorithms, predictive analytical models, and finally deep learning algorithms. You will learn to run the most powerful visualization packages available in R so as to ensure that you can easily derive insights from your data. Towards the end, you will also learn how to integrate R with Spark and Hadoop and perform large-scale data analytics without much complexity. What you will learnUnderstand the R programming language and its ecosystem of packages for data scienceObtain and clean your data before processingMaster essential exploratory techniques for summarizing dataExamine various machine learning prediction, modelsExplore the H2O analytics platform in R for deep learningApply data mining techniques to available datasetsWork with interactive visualization packages in RIntegrate R with Spark and Hadoop for large-scale data analyticsWho this book is for If you are a budding data scientist keen to learn about the popular pandas library, or a Python developer looking to step into the world of data analysis, this book is the ideal resource you need to get started. Some programming experience in Python will be helpful to get the most out of this course |
data science in pharma: Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications, Third Edition Johan Gabrielsson, Daniel Weiner, 2001-11-30 This is a revised and very expanded version of the previous second edition of the book. Pharmacokinetic and Pharmacodynamic Data Analysis provides an introduction into pharmacokinetic and pharmacodynamic concepts using simple illustrations and reasoning. It describes ways in which pharmacodynamic and pharmacodynamic theory may be used to give insight into modeling questions and how these questions can in turn lead to new knowledge. This book differentiates itself from other texts in this area in that it bridges the gap between relevant theory and the actual application of the theory to real life situations. The book is divided into two parts; the first introduces fundamental principles of PK and PD concepts, and principles of mathematical modeling, while the second provides case studies obtained from drug industry and academia. Topics included in the first part include a discussion of the statistical principles of model fitting, including how to assess the adequacy of the fit of a model, as well as strategies for selection of time points to be included in the design of a study. The first part also introduces basic pharmacokinetic and pharmacodynamic concepts, including an excellent discussion of effect compartment (link) models as well as indirect response models. The second part of the text includes over 70 modeling case studies. These include a discussion of the selection of the model, derivation of initial parameter estimates and interpretation of the corresponding output. Finally, the authors discuss a number of pharmacodynamic modeling situations including receptor binding models, synergy, and tolerance models (feedback and precursor models). This book will be of interest to researchers, to graduate students and advanced undergraduate students in the PK/PD area who wish to learn how to analyze biological data and build models and to become familiar with new areas of application. In addition, the text will be of interest to toxicologists interested in learning about determinants of exposure and performing toxicokinetic modeling. The inclusion of the numerous exercises and models makes it an excellent primary or adjutant text for traditional PK courses taught in pharmacy and medical schools. A diskette is included with the text that includes all of the exercises and solutions using WinNonlin. |
data science in pharma: Information and Knowledge in Internet of Things Teresa Guarda, Sajid Anwar, Marcelo Leon, Filipe Jorge Mota Pinto, 2021-10-06 This book provides readers with an insight into information and knowledge in the Internet of Things, in particular an investigation of data management and processing, information extraction, technology, knowledge management, knowledge sharing, knowledge co-creation, knowledge integration, and the development of new intelligent services available anytime, anywhere, by anyone. The authors show how IoT enables communication and ubiquitous computing between global citizens, networked machines and physical objects, providing a promising vision of the future integrating the real world of knowledge agents and things with the virtual world of information. |
data science in pharma: Swarm Intelligence Optimization Abhishek Kumar, Pramod Singh Rathore, Vicente Garcia Diaz, Rashmi Agrawal, 2021-01-07 Resource optimization has always been a thrust area of research, and as the Internet of Things (IoT) is the most talked about topic of the current era of technology, it has become the need of the hour. Therefore, the idea behind this book was to simplify the journey of those who aspire to understand resource optimization in the IoT. To this end, included in this book are various real-time/offline applications and algorithms/case studies in the fields of engineering, computer science, information security, and cloud computing, along with the modern tools and various technologies used in systems, leaving the reader with a high level of understanding of various techniques and algorithms used in resource optimization. |
data science in pharma: Applied Statistics in the Pharmaceutical Industry Steven P. Millard, Andreas Krause, 2013-11-09 Providing a general guide to statistical methods used in the pharmaceutical industry, and illustrating how to use S-PLUS to implement these methods, the book explains why S-PLUS is a useful software package and discusses the results and implications of each particular application. It is targeted at graduates in biostatistics, statisticians involved in the industry as research scientists, regulators, academics, and/or consultants who want to know more about how to use S-PLUS and learn about other sub-fields within the industry, as well as statisticians in other fields who want to know more about statistical applications in the pharmaceutical industry. |
data science in pharma: How Data Science Is Transforming Health Care Tim O'Reilly, Mike Loukides, Julie Steele, Colin Hill, 2012-08-24 In the early days of the 20th century, department store magnate JohnWanamaker famously said, I know that half of my advertising doesn'twork. The problem is that I don't know which half. That remainedbasically true until Google transformed advertising with AdSense basedon new uses of data and analysis. The same might be said about healthcare and it's poised to go through a similar transformation as newtools, techniques, and data sources come on line. Soon we'll makepolicy and resource decisions based on much better understanding ofwhat leads to the best outcomes, and we'll make medical decisionsbased on a patient's specific biology. The result will be betterhealth at less cost. This paper explores how data analysis will help us structure thebusiness of health care more effectively around outcomes, and how itwill transform the practice of medicine by personalizing for eachspecific patient. |
data science in pharma: Careers with the Pharmaceutical Industry Peter D. Stonier, 2003-05-07 In recent years, many factors have combined to change the operating environment of the international pharmaceutical industry leading to greater specialisation and sophistication. This new edition will give an update of the different opportunities in drug discovery and development and the scientific, medical or other specialist training needed to accomplish them. The scope of this edition has been broadened to encompass all major roles, including marketing and sales. |
data science in pharma: Research and Development in the Pharmaceutical Industry (A CBO Study) Congressional Budget Office, 2013-06-09 Perceptions that the pace of new-drug development has slowed and that the pharmaceutical industry is highly profitable have sparked concerns that significant problems loom for future drug development. This Congressional Budget Office (CBO) study-prepared at the request of the Senate Majority Leader-reviews basic facts about the drug industry's recent spending on research and development (R&D) and its output of new drugs. The study also examines issues relating to the costs of R&D, the federal government's role in pharmaceutical research, the performance of the pharmaceutical industry in developing innovative drugs, and the role of expected profits in private firms' decisions about investing in drug R&D. In keeping with CBO's mandate to provide objective, impartial analysis, the study makes no recommendations. David H. Austin prepared this report under the supervision of Joseph Kile and David Moore. Colin Baker provided valuable consultation... |
data science in pharma: Emergence of Pharmaceutical Industry Growth with Industrial IoT Approach Valentina Emilia Balas, Vijender Kumar Solanki, Raghvendra Kumar, 2019-09-24 Emergence of Pharmaceutical Industry Growth with Industrial IoT Approach uses an innovative approach to explore how the Internet of Things (IoT) and big data can improve approaches, create efficiencies and make discoveries. Rapid growth of the IoT has encouraged many companies in the manufacturing sector to make use of this technology to unlock its potential. Pharmaceutical manufacturing companies are no exception to this, as IoT has the potential to revolutionize aspects of the pharmaceutical manufacturing process, from drug discovery to manufacturing. Using clear, concise language and real world case studies, this book discusses systems level from both a human-factors point-of-view and the perspective of networking, databases, privacy and anti-spoofing. The wide variety of topics presented offers readers multiple perspectives on a how to integrate the Internet of Things into pharmaceutical manufacturing. - Covers efficiency improvements of pharmaceutical manufacturing through IoT/Big Data approaches - Explores cutting-edge technologies through sensor enabled environment in the pharmaceutical industry - Discusses the systems level from both a human-factors point-of-view and the perspective of networking, databases, privacy and anti-spoofing |
data science in pharma: Secondary Analysis of Electronic Health Records MIT Critical Data, 2016-09-09 This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients. |
data science in pharma: Solid State Development and Processing of Pharmaceutical Molecules Michael Gruss, 2021-11-15 Solid State Development and Processing of Pharmaceutical Molecules A guide to the lastest industry principles for optimizing the production of solid state active pharmaceutical ingredients Solid State Development and Processing of Pharmaceutical Molecules is an authoritative guide that covers the entire pharmaceutical value chain. The authors—noted experts on the topic—examine the importance of the solid state form of chemical and biological drugs and review the development, production, quality control, formulation, and stability of medicines. The book explores the most recent trends in the digitization and automation of the pharmaceutical production processes that reflect the need for consistent high quality. It also includes information on relevant regulatory and intellectual property considerations. This resource is aimed at professionals in the pharmaceutical industry and offers an in-depth examination of the commercially relevant issues facing developers, producers and distributors of drug substances. This important book: Provides a guide for the effective development of solid drug forms Compares different characterization methods for solid state APIs Offers a resource for understanding efficient production methods for solid state forms of chemical and biological drugs Includes information on automation, process control, and machine learning as an integral part of the development and production workflows Covers in detail the regulatory and quality control aspects of drug development Written for medicinal chemists, pharmaceutical industry professionals, pharma engineers, solid state chemists, chemical engineers, Solid State Development and Processing of Pharmaceutical Molecules reviews information on the solid state of active pharmaceutical ingredients for their efficient development and production. |
data science in pharma: Data Science for Marketing Analytics Mirza Rahim Baig, Gururajan Govindan, Vishwesh Ravi Shrimali, 2021-09-07 Turbocharge your marketing plans by making the leap from simple descriptive statistics in Excel to sophisticated predictive analytics with the Python programming language Key FeaturesUse data analytics and machine learning in a sales and marketing contextGain insights from data to make better business decisionsBuild your experience and confidence with realistic hands-on practiceBook Description Unleash the power of data to reach your marketing goals with this practical guide to data science for business. This book will help you get started on your journey to becoming a master of marketing analytics with Python. You'll work with relevant datasets and build your practical skills by tackling engaging exercises and activities that simulate real-world market analysis projects. You'll learn to think like a data scientist, build your problem-solving skills, and discover how to look at data in new ways to deliver business insights and make intelligent data-driven decisions. As well as learning how to clean, explore, and visualize data, you'll implement machine learning algorithms and build models to make predictions. As you work through the book, you'll use Python tools to analyze sales, visualize advertising data, predict revenue, address customer churn, and implement customer segmentation to understand behavior. By the end of this book, you'll have the knowledge, skills, and confidence to implement data science and machine learning techniques to better understand your marketing data and improve your decision-making. What you will learnLoad, clean, and explore sales and marketing data using pandasForm and test hypotheses using real data sets and analytics toolsVisualize patterns in customer behavior using MatplotlibUse advanced machine learning models like random forest and SVMUse various unsupervised learning algorithms for customer segmentationUse supervised learning techniques for sales predictionEvaluate and compare different models to get the best outcomesOptimize models with hyperparameter tuning and SMOTEWho this book is for This marketing book is for anyone who wants to learn how to use Python for cutting-edge marketing analytics. Whether you're a developer who wants to move into marketing, or a marketing analyst who wants to learn more sophisticated tools and techniques, this book will get you on the right path. Basic prior knowledge of Python and experience working with data will help you access this book more easily. |
data science in pharma: Analytical Techniques in the Pharmaceutical Sciences Anette Müllertz, Yvonne Perrie, Thomas Rades, 2016-08-30 The aim of this book is to present a range of analytical methods that can be used in formulation design and development and focus on how these systems can be applied to understand formulation components and the dosage form these build. To effectively design and exploit drug delivery systems, the underlying characteristic of a dosage form must be understood--from the characteristics of the individual formulation components, to how they act and interact within the formulation, and finally, to how this formulation responds in different biological environments. To achieve this, there is a wide range of analytical techniques that can be adopted to understand and elucidate the mechanics of drug delivery and drug formulation. Such methods include e.g. spectroscopic analysis, diffractometric analysis, thermal investigations, surface analytical techniques, particle size analysis, rheological techniques, methods to characterize drug stability and release, and biological analysis in appropriate cell and animal models. Whilst each of these methods can encompass a full research area in their own right, formulation scientists must be able to effectively apply these methods to the delivery system they are considering. The information in this book is designed to support researchers in their ability to fully characterize and analyze a range of delivery systems, using an appropriate selection of analytical techniques. Due to its consideration of regulatory approval, this book will also be suitable for industrial researchers both at early stage up to pre-clinical research. |
data science in pharma: Pharmaceutical Medicine Adrian Kilcoyne, Phil Ambery, Daniel O'Connor, 2013-05-23 The breadth of the pharmaceutical medicine can be daunting, but this book is designed to navigate a path through the speciality. Providing a broad overview of all topics relevant to the discipline of pharmaceutical medicine, it gives you the facts fast, in a user-friendly format, without having to dive through page upon page of dense text. With 136 chapters spread across 8 sections, the text offers a thorough grounding in issues ranging from medicines regulation to clinical trial design and data management. This makes it a useful revision aid for exams as well as giving you a taster of areas of pharmaceutical medicine adjacent to your current role. For healthcare professionals already working in the field, this book offers a guiding hand in difficult situations as well as supplying rapid access to the latest recommendations and guidelines. Written by authors with experience in the industry and drug regulation, this comprehensive and authoritative guide provides a shoulder to lean on throughout your pharmaceutical career. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …