Advertisement
data science in energy sector: Machine Learning and Data Science in the Power Generation Industry Patrick Bangert, 2021-01-14 Machine Learning and Data Science in the Power Generation Industry explores current best practices and quantifies the value-add in developing data-oriented computational programs in the power industry, with a particular focus on thoughtfully chosen real-world case studies. It provides a set of realistic pathways for organizations seeking to develop machine learning methods, with a discussion on data selection and curation as well as organizational implementation in terms of staffing and continuing operationalization. It articulates a body of case study–driven best practices, including renewable energy sources, the smart grid, and the finances around spot markets, and forecasting. - Provides best practices on how to design and set up ML projects in power systems, including all nontechnological aspects necessary to be successful - Explores implementation pathways, explaining key ML algorithms and approaches as well as the choices that must be made, how to make them, what outcomes may be expected, and how the data must be prepared for them - Determines the specific data needs for the collection, processing, and operationalization of data within machine learning algorithms for power systems - Accompanied by numerous supporting real-world case studies, providing practical evidence of both best practices and potential pitfalls |
data science in energy sector: New Horizons for a Data-Driven Economy José María Cavanillas, Edward Curry, Wolfgang Wahlster, 2016-04-04 In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment. |
data science in energy sector: Machine Learning and Data Science in the Oil and Gas Industry Patrick Bangert, 2021-03-04 Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing, and forecasting. Viewed as a guide book, this manual will lead a practitioner through the journey of a data science project in the oil and gas industry circumventing the pitfalls and articulating the business value. - Chart an overview of the techniques and tools of machine learning including all the non-technological aspects necessary to be successful - Gain practical understanding of machine learning used in oil and gas operations through contributed case studies - Learn change management skills that will help gain confidence in pursuing the technology - Understand the workflow of a full-scale project and where machine learning benefits (and where it does not) |
data science in energy sector: Data Science for Wind Energy Yu Ding, 2019-06-04 Data Science for Wind Energy provides an in-depth discussion on how data science methods can improve decision making for wind energy applications, near-ground wind field analysis and forecast, turbine power curve fitting and performance analysis, turbine reliability assessment, and maintenance optimization for wind turbines and wind farms. A broad set of data science methods covered, including time series models, spatio-temporal analysis, kernel regression, decision trees, kNN, splines, Bayesian inference, and importance sampling. More importantly, the data science methods are described in the context of wind energy applications, with specific wind energy examples and case studies. Please also visit the author’s book site at https://aml.engr.tamu.edu/book-dswe. Features Provides an integral treatment of data science methods and wind energy applications Includes specific demonstration of particular data science methods and their use in the context of addressing wind energy needs Presents real data, case studies and computer codes from wind energy research and industrial practice Covers material based on the author's ten plus years of academic research and insights |
data science in energy sector: Big Data Analytics Strategies for the Smart Grid Carol L. Stimmel, 2014-07-25 By implementing a comprehensive data analytics program, utility companies can meet the continually evolving challenges of modern grids that are operationally efficient, while reconciling the demands of greenhouse gas legislation and establishing a meaningful return on investment from smart grid deployments. Readable and accessible, Big Data Analytics Strategies for the Smart Grid addresses the needs of applying big data technologies and approaches, including Big Data cybersecurity, to the critical infrastructure that makes up the electrical utility grid. It supplies industry stakeholders with an in-depth understanding of the engineering, business, and customer domains within the power delivery market. The book explores the unique needs of electrical utility grids, including operational technology, IT, storage, processing, and how to transform grid assets for the benefit of both the utility business and energy consumers. It not only provides specific examples that illustrate how analytics work and how they are best applied, but also describes how to avoid potential problems and pitfalls. Discussing security and data privacy, it explores the role of the utility in protecting their customers’ right to privacy while still engaging in forward-looking business practices. The book includes discussions of: SAS for asset management tools The AutoGrid approach to commercial analytics Space-Time Insight’s work at the California ISO (CAISO) This book is an ideal resource for mid- to upper-level utility executives who need to understand the business value of smart grid data analytics. It explains critical concepts in a manner that will better position executives to make the right decisions about building their analytics programs. At the same time, the book provides sufficient technical depth that it is useful for data analytics professionals who need to better understand the nuances of the engineering and business challenges unique to the utilities industry. |
data science in energy sector: The Power of Data: Driving Climate Change with Data Science and Artificial Intelligence Innovations Aboul Ella Hassanien, Ashraf Darwish, 2023-03-11 This book discusses the advances of artificial intelligence and data sciences in climate change and provides the power of the climate data that is used as inputs to artificial intelligence systems. It is a good resource for researchers and professionals who work in the field of data sciences, artificial intelligence, and climate change applications. |
data science in energy sector: Data Science Applied to Sustainability Analysis Jennifer Dunn, Prasanna Balaprakash, 2021-05-11 Data Science Applied to Sustainability Analysis focuses on the methodological considerations associated with applying this tool in analysis techniques such as lifecycle assessment and materials flow analysis. As sustainability analysts need examples of applications of big data techniques that are defensible and practical in sustainability analyses and that yield actionable results that can inform policy development, corporate supply chain management strategy, or non-governmental organization positions, this book helps answer underlying questions. In addition, it addresses the need of data science experts looking for routes to apply their skills and knowledge to domain areas. - Presents data sources that are available for application in sustainability analyses, such as market information, environmental monitoring data, social media data and satellite imagery - Includes considerations sustainability analysts must evaluate when applying big data - Features case studies illustrating the application of data science in sustainability analyses |
data science in energy sector: Energy Management Valentin A Boicea, 2024-10-08 This book introduces the principle of carrying out a medium-term load forecast (MTLF) at power system level, based on the Big Data concept and Convolutionary Neural Network (CNNs). It also presents further research directions in the field of Deep Learning techniques and Big Data, as well as how these two concepts are used in power engineering. Efficient processing and accuracy of Big Data in the load forecast in power engineering leads to a significant improvement in the consumption pattern of the client and, implicitly, a better consumer awareness. At the same time, new energy services and new lines of business can be developed. The book will be of interest to electrical engineers, power engineers, and energy services professionals. |
data science in energy sector: Data Science and Applications for Modern Power Systems Le Xie, Yang Weng, Ram Rajagopal, 2023-06-20 This book offers a comprehensive collection of research articles that utilize data—in particular large data sets—in modern power systems operation and planning. As the power industry moves towards actively utilizing distributed resources with advanced technologies and incentives, it is becoming increasingly important to benefit from the available heterogeneous data sets for improved decision-making. The authors present a first-of-its-kind comprehensive review of big data opportunities and challenges in the smart grid industry. This book provides succinct and useful theory, practical algorithms, and case studies to improve power grid operations and planning utilizing big data, making it a useful graduate-level reference for students, faculty, and practitioners on the future grid. |
data science in energy sector: Efficient Learning Machines Mariette Awad, Rahul Khanna, 2015-04-27 Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning. |
data science in energy sector: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians. |
data science in energy sector: Data Science of Renewable Energy Integration Yuichi Ikeda, |
data science in energy sector: Data Analytics and Machine Learning Pushpa Singh, |
data science in energy sector: Handbook of Research on Data Science and Cybersecurity Innovations in Industry 4.0 Technologies Murugan, Thangavel, E., Nirmala, 2023-09-21 Disruptive innovations are now propelling Industry 4.0 (I4.0) and presenting new opportunities for value generation in all major industry segments. I4.0 technologies' innovations in cybersecurity and data science provide smart apps and services with accurate real-time monitoring and control. Through enhanced access to real-time information, it also aims to increase overall effectiveness, lower costs, and increase the efficiency of people, processes, and technology. The Handbook of Research on Data Science and Cybersecurity Innovations in Industry 4.0 Technologies discusses the technological foundations of cybersecurity and data science within the scope of the I4.0 landscape and details the existing cybersecurity and data science innovations with I4.0 applications, as well as state-of-the-art solutions with regard to both academic research and practical implementations. Covering key topics such as data science, blockchain, and artificial intelligence, this premier reference source is ideal for industry professionals, computer scientists, scholars, researchers, academicians, practitioners, instructors, and students. |
data science in energy sector: Machine Intelligence and Data Science Applications Vaclav Skala, T. P. Singh, Tanupriya Choudhury, Ravi Tomar, Md. Abul Bashar, 2022-08-01 This book is a compilation of peer reviewed papers presented at International Conference on Machine Intelligence and Data Science Applications (MIDAS 2021), held in Comilla University, Cumilla, Bangladesh during 26 – 27 December 2021. The book covers applications in various fields like image processing, natural language processing, computer vision, sentiment analysis, speech and gesture analysis, etc. It also includes interdisciplinary applications like legal, healthcare, smart society, cyber physical system and smart agriculture, etc. The book is a good reference for computer science engineers, lecturers/researchers in machine intelligence discipline and engineering graduates. |
data science in energy sector: Data Science Parveen Kumari, 2024-03-02 Data science is the study of how to extract useful information from data for students, strategic planning, and other purposes by using cutting-edge analytics methods, and scientific principles. Data science combines a number of fields, such as information technology, preparing data, data mining, predictive analytics, machine learning, and data visualization, in addition to statistics, mathematics, and software development. |
data science in energy sector: Big Data Analytics Framework for Smart Grids Rajkumar Viral, Divya Asija, Surender Salkuti, 2023-12-22 The text comprehensively discusses smart grid operations and the use of big data analytics in overcoming the existing challenges. It covers smart power generation, transmission, and distribution, explains energy management systems, artificial intelligence, and machine learning–based computing. •Presents a detailed state-of-the-art analysis of big data analytics and its uses in power grids. • Describes how the big data analytics framework has been used to display energy in two scenarios including a single house and a smart grid with thousands of smart meters. •Explores the role of the internet of things, artificial intelligence, and machine learning in smart grids. • Discusses edge analytics for integration of generation technologies, and decision-making approaches in detail. • Examines research limitations and presents recommendations for further research to incorporate big data analytics into power system design and operational frameworks. The text presents a comprehensive study and assessment of the state-of-the-art research and development related to the unique needs of electrical utility grids, including operational technology, storage, processing, and communication systems. It further discusses important topics such as complex adaptive power system, self-healing power system, smart transmission, and distribution networks, and smart metering infrastructure. It will serve as an ideal reference text for senior undergraduate, graduate students, and academic researchers in the areas such as electrical engineering, electronics and communications engineering, computer engineering, and information technology. |
data science in energy sector: Energy and Civilization Vaclav Smil, 2018-11-13 A comprehensive account of how energy has shaped society throughout history, from pre-agricultural foraging societies through today's fossil fuel–driven civilization. I wait for new Smil books the way some people wait for the next 'Star Wars' movie. In his latest book, Energy and Civilization: A History, he goes deep and broad to explain how innovations in humans' ability to turn energy into heat, light, and motion have been a driving force behind our cultural and economic progress over the past 10,000 years. —Bill Gates, Gates Notes, Best Books of the Year Energy is the only universal currency; it is necessary for getting anything done. The conversion of energy on Earth ranges from terra-forming forces of plate tectonics to cumulative erosive effects of raindrops. Life on Earth depends on the photosynthetic conversion of solar energy into plant biomass. Humans have come to rely on many more energy flows—ranging from fossil fuels to photovoltaic generation of electricity—for their civilized existence. In this monumental history, Vaclav Smil provides a comprehensive account of how energy has shaped society, from pre-agricultural foraging societies through today's fossil fuel–driven civilization. Humans are the only species that can systematically harness energies outside their bodies, using the power of their intellect and an enormous variety of artifacts—from the simplest tools to internal combustion engines and nuclear reactors. The epochal transition to fossil fuels affected everything: agriculture, industry, transportation, weapons, communication, economics, urbanization, quality of life, politics, and the environment. Smil describes humanity's energy eras in panoramic and interdisciplinary fashion, offering readers a magisterial overview. This book is an extensively updated and expanded version of Smil's Energy in World History (1994). Smil has incorporated an enormous amount of new material, reflecting the dramatic developments in energy studies over the last two decades and his own research over that time. |
data science in energy sector: Technological Learning in the Energy Sector Martin Junginger, Wilfried van Sark, André Faaij, 2010-01-01 'This expert analysis provides an important contribution to understanding the technicalities of energy technology cost dynamics. Given the urgent need for delivery of low-cost renewable energy technologies in particular, it is vital to understand how to accelerate this process of technological learning.' - Miguel Mendonca, World Future Council, Germany |
data science in energy sector: Emerging Trends in Data Science Machine Learning, IoT and Artificial Intelligence Shaweta Narula, Vivek Narula, 2024-03-11 Shaweta Narula, Assistant Professor, Department of Electronics and Communication, Nutan College of Engineering and Research, Talegaon Dabhade, Pune Maharashtra,India. Vivek Narula, Quality Manager, Multinational Company, Automotive Industry, Pune, Maharashtra, India. |
data science in energy sector: International Energy Outlook , 1986 |
data science in energy sector: Handbook of Smart Energy Systems Michel Fathi, Enrico Zio, Panos M. Pardalos, 2023-08-04 This handbook analyzes and develops methods and models to optimize solutions for energy access (for industry and the general world population alike) in terms of reliability and sustainability. With a focus on improving the performance of energy systems, it brings together state-of-the-art research on reliability enhancement, intelligent development, simulation and optimization, as well as sustainable development of energy systems. It helps energy stakeholders and professionals learn the methodologies needed to improve the reliability of energy supply-and-demand systems, achieve more efficient long-term operations, deal with uncertainties in energy systems, and reduce energy emissions. Highlighting novel models and their applications from leading experts in this important area, this book will appeal to researchers, students, and engineers in the various domains of smart energy systems and encourage them to pursue research and development in this exciting and highly relevant field. |
data science in energy sector: Big Data and Analytics Dr. Jugnesh Kumar, Dr. Anubhav Kumar, Dr. Rinku Kumar, 2024-03-05 Unveiling insights, unleashing potential: Navigating the depths of big data and analytics for a data-driven tomorrow KEY FEATURES ● Learn about big data and how it helps businesses innovate, grow, and make decisions efficiently. ● Learn about data collection, storage, processing, and analysis, along with tools and methods. ● Discover real-life examples of big data applications across industries, addressing challenges like privacy and security. DESCRIPTION Big data and analytics is an indispensable guide that navigates the complex data management and analysis. This comprehensive book covers the core principles, processes, and tools, ensuring readers grasp the essentials and progress to advanced applications. It will help you understand the different analysis types like descriptive, predictive, and prescriptive. Learn about NoSQL databases and their benefits over SQL. The book centers on Hadoop, explaining its features, versions, and main components like HDFS (storage) and MapReduce (processing). Explore MapReduce and YARN for efficient data processing. Gain insights into MongoDB and Hive, popular tools in the big data landscape. WHAT YOU WILL LEARN ● Grasp big data fundamentals and applications. ● Master descriptive, predictive, and prescriptive analytics. ● Understand HDFS, MapReduce, YARN, and their functionalities. ● Explore data storage, retrieval, and manipulation in a NoSQL database. ● Gain practical insights and apply them to real-world scenarios. WHO THIS BOOK IS FOR This book caters to a diverse audience, including data professionals, analysts, IT managers, and business intelligence practitioners. TABLE OF CONTENTS 1. Introduction to Big Data 2. Big Data Analytics 3. Introduction of NoSQL 4. Introduction to Hadoop 5. Map Reduce 6. Introduction to MongoDB |
data science in energy sector: Digital Decarbonization Varun Sivaram, 2018 As energy industries produce ever more data, firms are harnessing greater computing power, advances in data science, and increased digital connectivity to exploit that data. These trends have the potential to transform the way energy is produced, transported, and consumed. |
data science in energy sector: Data Science and Security Samiksha Shukla, Xiao-Zhi Gao, Joseph Varghese Kureethara, Durgesh Mishra, 2022-07-01 This book presents best selected papers presented at the International Conference on Data Science for Computational Security (IDSCS 2022), organized by the Department of Data Science, CHRIST (Deemed to be University), Pune Lavasa Campus, India, during 11 – 12 February 2022. The book proposes new technologies and discusses future solutions and applications of data science, data analytics and security. The book targets current research works in the areas of data science, data security, data analytics, artificial intelligence, machine learning, computer vision, algorithms design, computer networking, data mining, big data, text mining, knowledge representation, soft computing and cloud computing. |
data science in energy sector: Big Data Application in Power Systems Reza Arghandeh, Yuxun Zhou, 2024-07-01 Big Data Application in Power Systems, Second Edition presents a thorough update of the previous volume, providing readers with step-by-step guidance in big data analytics utilization for power system diagnostics, operation, and control. Bringing back a team of global experts and drawing on fresh, emerging perspectives, this book provides cutting-edge advice for meeting today's challenges in this rapidly accelerating area of power engineering. Divided into three parts, this book begins by breaking down the big picture for electric utilities, before zooming in to examine theoretical problems and solutions in detail. Finally, the third section provides case studies and applications, demonstrating solution troubleshooting and design from a variety of perspectives and for a range of technologies. Readers will develop new strategies and techniques for leveraging data towards real-world outcomes. Including five brand new chapters on emerging technological solutions, Big Data Application in Power Systems, Second Edition remains an essential resource for the reader aiming to utilize the potential of big data in the power systems of the future. - Provides a total refresh to include the most up-to-date research, developments, and challenges - Focuses on practical techniques, including rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches for processing high dimensional, heterogeneous, and spatiotemporal data - Engages with cross-disciplinary lessons, drawing on the impact of intersectional technology including statistics, computer science, and bioinformatics - Includes five brand new chapters on hot topics, ranging from uncertainty decision-making to features, selection methods, and the opportunities provided by social network data |
data science in energy sector: Smart Technologies in Data Science and Communication Kingsley A. Ogudo, Sanjoy Kumar Saha, Debnath Bhattacharyya, 2023-01-01 This book features high-quality, peer-reviewed research papers presented at the Fifth International Conference on Smart Technologies in Data Science and Communication (SMARTDSC 2022), held Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, India, on 16 – 17 June 2022. It includes innovative and novel contributions in the areas of data analytics, communication and soft computing. |
data science in energy sector: Data-Driven Engineering Design Ang Liu, Yuchen Wang, Xingzhi Wang, 2021-10-09 This book addresses the emerging paradigm of data-driven engineering design. In the big-data era, data is becoming a strategic asset for global manufacturers. This book shows how the power of data can be leveraged to drive the engineering design process, in particular, the early-stage design. Based on novel combinations of standing design methodology and the emerging data science, the book presents a collection of theoretically sound and practically viable design frameworks, which are intended to address a variety of critical design activities including conceptual design, complexity management, smart customization, smart product design, product service integration, and so forth. In addition, it includes a number of detailed case studies to showcase the application of data-driven engineering design. The book concludes with a set of promising research questions that warrant further investigation. Given its scope, the book will appeal to a broad readership, including postgraduate students, researchers, lecturers, and practitioners in the field of engineering design. |
data science in energy sector: Microsoft Certified: Azure Data Scientist Associate (DP-100) Cybellium, Welcome to the forefront of knowledge with Cybellium, your trusted partner in mastering the cutting-edge fields of IT, Artificial Intelligence, Cyber Security, Business, Economics and Science. Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com |
data science in energy sector: Transportation Energy Data Book , 2005 |
data science in energy sector: Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry Chkoniya, Valentina, 2021-06-25 The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students. |
data science in energy sector: Data Science for Engineers Raghunathan Rengaswamy, Resmi Suresh, 2022-12-16 With tremendous improvement in computational power and availability of rich data, almost all engineering disciplines use data science at some level. This textbook presents material on data science comprehensively, and in a structured manner. It provides conceptual understanding of the fields of data science, machine learning, and artificial intelligence, with enough level of mathematical details necessary for the readers. This will help readers understand major thematic ideas in data science, machine learning and artificial intelligence, and implement first-level data science solutions to practical engineering problems. The book- Provides a systematic approach for understanding data science techniques Explain why machine learning techniques are able to cross-cut several disciplines. Covers topics including statistics, linear algebra and optimization from a data science perspective. Provides multiple examples to explain the underlying ideas in machine learning algorithms Describes several contemporary machine learning algorithms The textbook is primarily written for undergraduate and senior undergraduate students in different engineering disciplines including chemical engineering, mechanical engineering, electrical engineering, electronics and communications engineering for courses on data science, machine learning and artificial intelligence. |
data science in energy sector: Data Science and Applications Satyasai Jagannath Nanda, |
data science in energy sector: Designing Data Spaces Boris Otto, Michael ten Hompel, Stefan Wrobel, 2022-07-21 This open access book provides a comprehensive view on data ecosystems and platform economics from methodical and technological foundations up to reports from practical implementations and applications in various industries. To this end, the book is structured in four parts: Part I “Foundations and Contexts” provides a general overview about building, running, and governing data spaces and an introduction to the IDS and GAIA-X projects. Part II “Data Space Technologies” subsequently details various implementation aspects of IDS and GAIA-X, including eg data usage control, the usage of blockchain technologies, or semantic data integration and interoperability. Next, Part III describes various “Use Cases and Data Ecosystems” from various application areas such as agriculture, healthcare, industry, energy, and mobility. Part IV eventually offers an overview of several “Solutions and Applications”, eg including products and experiences from companies like Google, SAP, Huawei, T-Systems, Innopay and many more. Overall, the book provides professionals in industry with an encompassing overview of the technological and economic aspects of data spaces, based on the International Data Spaces and Gaia-X initiatives. It presents implementations and business cases and gives an outlook to future developments. In doing so, it aims at proliferating the vision of a social data market economy based on data spaces which embrace trust and data sovereignty. |
data science in energy sector: Career Calling Publications Division, 2023-02-17 This book is a compilation of articles published in Employment News with focus on new and upcoming career avenues. |
data science in energy sector: Sustainametrics - envisioning a sustainable future with data science Shutaro Takeda, Alexander Ryota Keeley, Shunsuke Managi, Thomas Gloria, 2023-03-08 |
data science in energy sector: Advanced Methods in Statistics, Data Science and Related Applications Matilde Bini, |
data science in energy sector: Open Data and Energy Analytics Benedetto Nastasi, Massimiliano Manfren, Michel Noussan, 2020 Open data and policy implications coming from data-aware planning entail collection and pre- and postprocessing as operations of primary interest. Before these steps, making data available to people and their decision-makers is a crucial point. Referring to the relationship between data and energy, public administrations, governments, and research bodies are promoting the construction of reliable and robust datasets to pursue policies coherent with the Sustainable Development Goals, as well as to allow citizens to make informed choices. Energy engineers and planners must provide the simplest and most robust tools to collect, process, and analyze data in order to offer solid data-based evidence for future projections in building, district, and regional systems planning. This Special Issue aims at providing the state-of-the-art on open-energy data analytics; its availability in the different contexts, i.e., country peculiarities; and its availability at different scales, i.e., building, district, and regional for data-aware planning and policy-making. For all the aforementioned reasons, we encourage researchers to share their original works on the field of open data and energy analytics. Topics of primary interest include but are not limited to the following: 1. Open data and energy sustainability; 2. Open data science and energy planning; 3. Open science and open governance for sustainable development goals; 4. Key performance indicators of data-aware energy modelling, planning, and policy; 5. Energy, water, and sustainability database for building, district, and regional systems; 6. Best practices and case studies. |
data science in energy sector: Enabling AI Applications in Data Science Aboul-Ella Hassanien, Mohamed Hamed N. Taha, Nour Eldeen M. Khalifa, 2020-09-23 This book provides a detailed overview of the latest developments and applications in the field of artificial intelligence and data science. AI applications have achieved great accuracy and performance with the help of developments in data processing and storage. It has also gained strength through the amount and quality of data which is the main nucleus of data science. This book aims to provide the latest research findings in the field of artificial intelligence with data science. |
data science in energy sector: Fundamentals of Data Science DataMining MachineLearning DeepLearning and IoTs Dr. P. Kavitha, Mr. P. Jayasheelan, Ms. C. Karpagam, Dr. K. Prabavathy, 2023-12-23 Dr. P. Kavitha, Associate Professor, Department of Computer Science, Sri Ramakrishna College of Arts & Science, Coimbatore, Tamil Nadu, India. Mr. P. Jayasheelan, Assistant Professor, Department of Computer Science, Sri Krishna Aditya College of arts and Science, Coimbatore, Tamil Nadu, India. Ms. C. Karpagam, Assistant Professor, Department of Computer Science with Data Analytics, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu, India. Dr. K. Prabavathy, Assistant Professor, Department of Data Science and Analytics, Sree Saraswathi Thyagaraja College, Pollachi, Coimbatore, Tamil Nadu, India. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open …
Belmont Forum Adopts Open Data Principles for Environme…
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data …
Belmont Forum Data Accessibility Statement an…
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, …
Belmont Forum Adopts Open Data Principles for Environme…
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management …
Belmont Forum Data Accessibility Statement an…
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. …