Advertisement
data science for public policy: Data Science for Public Policy Jeffrey C. Chen, Edward A. Rubin, Gary J. Cornwall, 2021-09-01 This textbook presents the essential tools and core concepts of data science to public officials, policy analysts, and economists among others in order to further their application in the public sector. An expansion of the quantitative economics frameworks presented in policy and business schools, this book emphasizes the process of asking relevant questions to inform public policy. Its techniques and approaches emphasize data-driven practices, beginning with the basic programming paradigms that occupy the majority of an analyst’s time and advancing to the practical applications of statistical learning and machine learning. The text considers two divergent, competing perspectives to support its applications, incorporating techniques from both causal inference and prediction. Additionally, the book includes open-sourced data as well as live code, written in R and presented in notebook form, which readers can use and modify to practice working with data. |
data science for public policy: Public Policy Analytics Ken Steif, 2021-08-18 Public Policy Analytics: Code & Context for Data Science in Government teaches readers how to address complex public policy problems with data and analytics using reproducible methods in R. Each of the eight chapters provides a detailed case study, showing readers: how to develop exploratory indicators; understand ‘spatial process’ and develop spatial analytics; how to develop ‘useful’ predictive analytics; how to convey these outputs to non-technical decision-makers through the medium of data visualization; and why, ultimately, data science and ‘Planning’ are one and the same. A graduate-level introduction to data science, this book will appeal to researchers and data scientists at the intersection of data analytics and public policy, as well as readers who wish to understand how algorithms will affect the future of government. |
data science for public policy: Data Science for Economics and Finance Sergio Consoli, Diego Reforgiato Recupero, Michaela Saisana, 2021 This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications. |
data science for public policy: Introduction to Data Science for Social and Policy Research Jose Manuel Magallanes Reyes, 2017-09-21 This comprehensive guide provides a step-by-step approach to data collection, cleaning, formatting, and storage, using Python and R. |
data science for public policy: Data Science in the Public Interest Joshua D. Hawley, 2020 This book is about how new and underutilized types of big data sources can inform public policy decisions related to workforce development. Hawley describes how government is currently using data to inform decisions about the workforce at the state and local levels. He then moves beyond standardized performance metrics designed to serve federal agency requirements and discusses how government can improve data gathering and analysis to provide better, up-to-date information for government decision making-- |
data science for public policy: Data Analysis for Business, Economics, and Policy Gábor Békés, Gábor Kézdi, 2021-05-06 A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data. |
data science for public policy: Data Analysis for Politics and Policy Edward R. Tufte, 1974 Introduction to data analysis; Predictions and projections: some issues of research design; Two-variable linear regression; Multiple regression. |
data science for public policy: R for Political Data Science Francisco Urdinez, Andres Cruz, 2020-11-18 R for Political Data Science: A Practical Guide is a handbook for political scientists new to R who want to learn the most useful and common ways to interpret and analyze political data. It was written by political scientists, thinking about the many real-world problems faced in their work. The book has 16 chapters and is organized in three sections. The first, on the use of R, is for those users who are learning R or are migrating from another software. The second section, on econometric models, covers OLS, binary and survival models, panel data, and causal inference. The third section is a data science toolbox of some the most useful tools in the discipline: data imputation, fuzzy merge of large datasets, web mining, quantitative text analysis, network analysis, mapping, spatial cluster analysis, and principal component analysis. Key features: Each chapter has the most up-to-date and simple option available for each task, assuming minimal prerequisites and no previous experience in R Makes extensive use of the Tidyverse, the group of packages that has revolutionized the use of R Provides a step-by-step guide that you can replicate using your own data Includes exercises in every chapter for course use or self-study Focuses on practical-based approaches to statistical inference rather than mathematical formulae Supplemented by an R package, including all data As the title suggests, this book is highly applied in nature, and is designed as a toolbox for the reader. It can be used in methods and data science courses, at both the undergraduate and graduate levels. It will be equally useful for a university student pursuing a PhD, political consultants, or a public official, all of whom need to transform their datasets into substantive and easily interpretable conclusions. |
data science for public policy: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field. |
data science for public policy: Decoding the Social World Sandra Gonzalez-Bailon, 2017-12-22 How data science and the analysis of networks help us solve the puzzle of unintended consequences. Social life is full of paradoxes. Our intentional actions often trigger outcomes that we did not intend or even envision. How do we explain those unintended effects and what can we do to regulate them? In Decoding the Social World, Sandra González-Bailón explains how data science and digital traces help us solve the puzzle of unintended consequences—offering the solution to a social paradox that has intrigued thinkers for centuries. Communication has always been the force that makes a collection of people more than the sum of individuals, but only now can we explain why: digital technologies have made it possible to parse the information we generate by being social in new, imaginative ways. And yet we must look at that data, González-Bailón argues, through the lens of theories that capture the nature of social life. The technologies we use, in the end, are also a manifestation of the social world we inhabit. González-Bailón discusses how the unpredictability of social life relates to communication networks, social influence, and the unintended effects that derive from individual decisions. She describes how communication generates social dynamics in aggregate (leading to episodes of “collective effervescence”) and discusses the mechanisms that underlie large-scale diffusion, when information and behavior spread “like wildfire.” She applies the theory of networks to illuminate why collective outcomes can differ drastically even when they arise from the same individual actions. By opening the black box of unintended effects, González-Bailón identifies strategies for social intervention and discusses the policy implications—and how data science and evidence-based research embolden critical thinking in a world that is constantly changing. |
data science for public policy: Quantitative Social Science Kosuke Imai, Lori D. Bougher, 2021-03-16 Princeton University Press published Imai's textbook, Quantitative Social Science: An Introduction, an introduction to quantitative methods and data science for upper level undergrads and graduates in professional programs, in February 2017. What is distinct about the book is how it leads students through a series of applied examples of statistical methods, drawing on real examples from social science research. The original book was prepared with the statistical software R, which is freely available online and has gained in popularity in recent years. But many existing courses in statistics and data sciences, particularly in some subject areas like sociology and law, use STATA, another general purpose package that has been the market leader since the 1980s. We've had several requests for STATA versions of the text as many programs use it by default. This is a translation of the original text, keeping all the current pedagogical text but inserting the necessary code and outputs from STATA in their place-- |
data science for public policy: Data Feminism Catherine D'Ignazio, Lauren F. Klein, 2020-03-31 A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought. Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.” Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed. |
data science for public policy: Data Analysis for Social Science Elena Llaudet, Kosuke Imai, 2022-11-29 Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors-- |
data science for public policy: Geospatial Health Data Paula Moraga, 2019-11-26 Geospatial health data are essential to inform public health and policy. These data can be used to quantify disease burden, understand geographic and temporal patterns, identify risk factors, and measure inequalities. Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny describes spatial and spatio-temporal statistical methods and visualization techniques to analyze georeferenced health data in R. The book covers the following topics: Manipulate and transform point, areal, and raster data, Bayesian hierarchical models for disease mapping using areal and geostatistical data, Fit and interpret spatial and spatio-temporal models with the Integrated Nested Laplace Approximations (INLA) and the Stochastic Partial Differential Equation (SPDE) approaches, Create interactive and static visualizations such as disease maps and time plots, Reproducible R Markdown reports, interactive dashboards, and Shiny web applications that facilitate the communication of insights to collaborators and policy makers. The book features fully reproducible examples of several disease and environmental applications using real-world data such as malaria in The Gambia, cancer in Scotland and USA, and air pollution in Spain. Examples in the book focus on health applications, but the approaches covered are also applicable to other fields that use georeferenced data including epidemiology, ecology, demography or criminology. The book provides clear descriptions of the R code for data importing, manipulation, modeling and visualization, as well as the interpretation of the results. This ensures contents are fully reproducible and accessible for students, researchers and practitioners. |
data science for public policy: Doing Data Science Cathy O'Neil, Rachel Schutt, 2013-10-09 Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course. |
data science for public policy: Modern Data Science with R Benjamin S. Baumer, Daniel T. Kaplan, Nicholas J. Horton, 2021-03-31 From a review of the first edition: Modern Data Science with R... is rich with examples and is guided by a strong narrative voice. What’s more, it presents an organizing framework that makes a convincing argument that data science is a course distinct from applied statistics (The American Statistician). Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world data problems. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling questions. The second edition is updated to reflect the growing influence of the tidyverse set of packages. All code in the book has been revised and styled to be more readable and easier to understand. New functionality from packages like sf, purrr, tidymodels, and tidytext is now integrated into the text. All chapters have been revised, and several have been split, re-organized, or re-imagined to meet the shifting landscape of best practice. |
data science for public policy: Journal of Public Policy and Marketing Thomas C. Kinnear, 1984-05 |
data science for public policy: The Role of Public Policy in K-12 Science Education George E. DeBoer, 2011-01-01 The goal of this volume of Research in Science Education is to examine the relationship between science education policy and practice and the special role that science education researchers play in influencing policy. It has been suggested that the science education research community is isolated from the political process, pays little attention to policy matters, and has little influence on policy. But to influence policy, it is important to understand how policy is made and how it is implemented. This volume sheds light on the intersection between policy and practice through both theoretical discussions and practical examples. This book was written primarily about science education policy development in the context of the highly decentralized educational system of the United States. But, because policy development is fundamentally a social activity involving knowledge, values, and personal and community interests, there are similarities in how education policy gets enacted and implemented around the world. This volume is meant to be useful to science education researchers and to practitioners such as teachers and administrators because it provides information about which aspects of the science education enterprise are affected by state, local, and national policies. It also provides helpful information for researchers and practitioners who wonder how they might influence policy. In particular, it points out how the values of people who are affected by policy initiatives are critical to the implementation of those policies. |
data science for public policy: Big Data and Social Science Ian Foster, Rayid Ghani, Ron S. Jarmin, Frauke Kreuter, Julia Lane, 2016-08-10 Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website. |
data science for public policy: Policy Practice and Digital Science Marijn Janssen, Maria A. Wimmer, Ameneh Deljoo, 2015-06-03 The explosive growth in data, computational power, and social media creates new opportunities for innovating the processes and solutions of Information and communications technology (ICT) based policy-making and research. To take advantage of these developments in the digital world, new approaches, concepts, instruments and methods are needed to navigate the societal and computational complexity. This requires extensive interdisciplinary knowledge of public administration, policy analyses, information systems, complex systems and computer science. This book provides the foundation for this new interdisciplinary field, in which various traditional disciplines are blending. Both policy makers, executors and those in charge of policy implementations acknowledge that ICT is becoming more important and is changing the policy-making process, resulting in a next generation policy-making based on ICT support. Web 2.0 and even Web 3.0 point to the specific applications of social networks, semantically enriched and linked data, whereas policy-making has also to do with the use of the vast amount of data, predictions and forecasts, and improving the outcomes of policy-making, which is confronted with an increasing complexity and uncertainty of the outcomes. The field of policy-making is changing and driven by developments like open data, computational methods for processing data, opining mining, simulation and visualization of rich data sets, all combined with public engagement, social media and participatory tools. |
data science for public policy: The University of Chicago Magazine , 1917 |
data science for public policy: Open Access and the Public Domain in Digital Data and Information for Science National Research Council, Policy and Global Affairs, Board on International Scientific Organizations, U.S. National Committee for CODATA, 2004-06-14 This symposium, which was held on March 10-11, 2003, at UNESCO headquarters in Paris, brought together policy experts and managers from the government and academic sectors in both developed and developing countries to (1) describe the role, value, and limits that the public domain and open access to digital data and information have in the context of international research; (2) identify and analyze the various legal, economic, and technological pressures on the public domain in digital data and information, and their potential effects on international research; and (3) review the existing and proposed approaches for preserving and promoting the public domain and open access to scientific and technical data and information on a global basis, with particular attention to the needs of developing countries. |
data science for public policy: Handbook on Science and Public Policy Dagmar Simon, Stefan Kuhlmann, Julia Stamm, Weert Canzler, 2019 This Handbook assembles state-of-the-art insights into the co-evolutionary and precarious relations between science and public policy. Beyond this, it also offers a fresh outlook on emerging challenges for science (including technology and innovation) in changing societies, and related policy requirements, as well as the challenges for public policy in view of science-driven economic, societal, and cultural changes. In short, this book deals with science as a policy-triggered project as well as public policy as a science-driven venture. |
data science for public policy: Statistical Foundations of Data Science Jianqing Fan, Runze Li, Cun-Hui Zhang, Hui Zou, 2020-09-21 Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning. |
data science for public policy: The Science of Science Policy Julia I. Lane, Kaye Husbands Fealing, John H. Marburger, III, Stephanie S. Shipp, 2011-03-18 Basic scientific research and technological development have had an enormous impact on innovation, economic growth, and social well-being. Yet science policy debates have long been dominated by advocates for particular scientific fields or missions. In the absence of a deeper understanding of the changing framework in which innovation occurs, policymakers cannot predict how best to make and manage investments to exploit our most promising and important opportunities. Since 2005, a science of science policy has developed rapidly in response to policymakers' increased demands for better tools and the social sciences' capacity to provide them. The Science of Science Policy: A Handbook brings together some of the best and brightest minds working in science policy to explore the foundations of an evidence-based platform for the field. The contributions in this book provide an overview of the current state of the science of science policy from three angles: theoretical, empirical, and policy in practice. They offer perspectives from the broader social science, behavioral science, and policy communities on the fascinating challenges and prospects in this evolving arena. Drawing on domestic and international experiences, the text delivers insights about the critical questions that create a demand for a science of science policy. |
data science for public policy: Democratizing Our Data Julia Lane, 2021-10-19 A wake-up call for America to create a new framework for democratizing data. Public data are foundational to our democratic system. People need consistently high-quality information from trustworthy sources. In the new economy, wealth is generated by access to data; government's job is to democratize the data playing field. Yet data produced by the American government are getting worse and costing more. In Democratizing Our Data, Julia Lane argues that good data are essential for democracy. Her book is a wake-up call to America to fix its broken public data system. |
data science for public policy: Innovation and Public Policy Austan Goolsbee, Benjamin F. Jones, 2022-03-25 A calculation of the social returns to innovation /Benjamin F. Jones and Lawrence H. Summers --Innovation and human capital policy /John Van Reenen --Immigration policy levers for US innovation and start-ups /Sari Pekkala Kerr and William R. Kerr --Scientific grant funding /Pierre Azoulay and Danielle Li --Tax policy for innovation /Bronwyn H. Hall --Taxation and innovation: what do we know? /Ufuk Akcigit and Stefanie Stantcheva --Government incentives for entrepreneurship /Josh Lerner. |
data science for public policy: The Data Revolution Rob Kitchin, 2014-09-16 Carefully distinguishing between big data and open data, and exploring various data infrastructures, Kitchin vividly illustrates how the data landscape is rapidly changing and calls for a revolution in how we think about data. - Evelyn Ruppert, Goldsmiths, University of London Deconstructs the hype around the ‘data revolution’ to carefully guide us through the histories and the futures of ‘big data.’ The book skilfully engages with debates from across the humanities, social sciences, and sciences in order to produce a critical account of how data are enmeshed into enormous social, economic, and political changes that are taking place. - Mark Graham, University of Oxford Traditionally, data has been a scarce commodity which, given its value, has been either jealously guarded or expensively traded. In recent years, technological developments and political lobbying have turned this position on its head. Data now flow as a deep and wide torrent, are low in cost and supported by robust infrastructures, and are increasingly open and accessible. A data revolution is underway, one that is already reshaping how knowledge is produced, business conducted, and governance enacted, as well as raising many questions concerning surveillance, privacy, security, profiling, social sorting, and intellectual property rights. In contrast to the hype and hubris of much media and business coverage, The Data Revolution provides a synoptic and critical analysis of the emerging data landscape. Accessible in style, the book provides: A synoptic overview of big data, open data and data infrastructures An introduction to thinking conceptually about data, data infrastructures, data analytics and data markets Acritical discussion of the technical shortcomings and the social, political and ethical consequences of the data revolution An analysis of the implications of the data revolution to academic, business and government practices |
data science for public policy: Science for Policy Handbook Vladimir Sucha, Marta Sienkiewicz, 2020-07-29 Science for Policy Handbook provides advice on how to bring science to the attention of policymakers. This resource is dedicated to researchers and research organizations aiming to achieve policy impacts. The book includes lessons learned along the way, advice on new skills, practices for individual researchers, elements necessary for institutional change, and knowledge areas and processes in which to invest. It puts co-creation at the centre of Science for Policy 2.0, a more integrated model of knowledge-policy relationship. Covers the vital area of science for policymaking Includes contributions from leading practitioners from the Joint Research Centre/European Commission Provides key skills based on the science-policy interface needed for effective evidence-informed policymaking Presents processes of knowledge production relevant for a more holistic science-policy relationship, along with the types of knowledge that are useful in policymaking |
data science for public policy: Handbook on Using Administrative Data for Research and Evidence-based Policy Shawn Cole, Iqbal Dhaliwal, Anja Sautmann, 2021 This Handbook intends to inform Data Providers and researchers on how to provide privacy-protected access to, handle, and analyze administrative data, and to link them with existing resources, such as a database of data use agreements (DUA) and templates. Available publicly, the Handbook will provide guidance on data access requirements and procedures, data privacy, data security, property rights, regulations for public data use, data architecture, data use and storage, cost structure and recovery, ethics and privacy-protection, making data accessible for research, and dissemination for restricted access use. The knowledge base will serve as a resource for all researchers looking to work with administrative data and for Data Providers looking to make such data available. |
data science for public policy: Data Analysis for the Life Sciences with R Rafael A. Irizarry, Michael I. Love, 2016-10-04 This book covers several of the statistical concepts and data analytic skills needed to succeed in data-driven life science research. The authors proceed from relatively basic concepts related to computed p-values to advanced topics related to analyzing highthroughput data. They include the R code that performs this analysis and connect the lines of code to the statistical and mathematical concepts explained. |
data science for public policy: Understanding Policy Decisions Bruno Dente, 2013-12-04 This book proposes a model for understanding how innovative policy decisions are taken in complex political and organizational systems as well as the possible strategies that the promoter of the innovation can employ in order to maximize the probability of successful adoption and implementation. It presents a conceptual framework for the analysis of decisional situations in order to design the most appropriate strategies for overcoming conflict (e.g. of the NIMBY variety) and/or increasing the engagement of potentially interested actors. The book includes a template for decisional case studies, a protocol for the definition of a decisional strategy, and an exercise in decisional analysis. |
data science for public policy: Numsense! Data Science for the Layman Annalyn Ng, 2017-03-24 Used in Stanford's CS102 Big Data (Spring 2017) course. Want to get started on data science? Our promise: no math added. This book has been written in layman's terms as a gentle introduction to data science and its algorithms. Each algorithm has its own dedicated chapter that explains how it works, and shows an example of a real-world application. To help you grasp key concepts, we stick to intuitive explanations, as well as lots of visuals, all of which are colorblind-friendly. Popular concepts covered include: A/B Testing Anomaly Detection Association Rules Clustering Decision Trees and Random Forests Regression Analysis Social Network Analysis Neural Networks Features: Intuitive explanations and visuals Real-world applications to illustrate each algorithm Point summaries at the end of each chapter Reference sheets comparing the pros and cons of algorithms Glossary list of commonly-used terms With this book, we hope to give you a practical understanding of data science, so that you, too, can leverage its strengths in making better decisions. |
data science for public policy: The Science of Citizen Science Katrin Vohland, Anne Land-zandstra, Luigi Ceccaroni, Rob Lemmens, Josep Perelló, Marisa Ponti, Roeland Samson, Katherin Wagenknecht, 2021 This open access book discusses how the involvement of citizens into scientific endeavors is expected to contribute to solve the big challenges of our time, such as climate change and the loss of biodiversity, growing inequalities within and between societies, and the sustainability turn. The field of citizen science has been growing in recent decades. Many different stakeholders from scientists to citizens and from policy makers to environmental organisations have been involved in its practice. In addition, many scientists also study citizen science as a research approach and as a way for science and society to interact and collaborate. This book provides a representation of the practices as well as scientific and societal outcomes in different disciplines. It reflects the contribution of citizen science to societal development, education, or innovation and provides and overview of the field of actors as well as on tools and guidelines. It serves as an introduction for anyone who wants to get involved in and learn more about the science of citizen science. |
data science for public policy: Big Data in Education Ben Williamson, 2017-07-24 Big data has the power to transform education and educational research. Governments, researchers and commercial companies are only beginning to understand the potential that big data offers in informing policy ideas, contributing to the development of new educational tools and innovative ways of conducting research. This cutting-edge overview explores the current state-of-play, looking at big data and the related topic of computer code to examine the implications for education and schooling for today and the near future. Key topics include: · The role of learning analytics and educational data science in schools · A critical appreciation of code, algorithms and infrastructures · The rise of ‘cognitive classrooms’, and the practical application of computational algorithms to learning environments · Important digital research methods issues for researchers This is essential reading for anyone studying or working in today′s education environment! |
data science for public policy: The Path to Becoming a Data-Driven Public Sector Oecd, Organisation for Economic Co-operation and Development, 2019-11-28 Twenty-first century governments must keep pace with the expectations of their citizens and deliver on the promise of the digital age. Data-driven approaches are particularly effective for meeting those expectations and rethinking the way governments and citizens interact. This report highlights the important role data can play in creating conditions that improve public services, increase the effectiveness of public spending and inform ethical and privacy considerations. It presents a data-driven public sector framework that can help countries or organisations assess the elements needed for using data to make better-informed decisions across public sectors. |
data science for public policy: Economy, Society and Public Policy The Core Team, 2019 Economy, Society, and Public Policy is a new way to learn economics. It is designed specifically for students studying social sciences, public policy, business studies, engineering and other disciplines who want to understand how the economy works and how it can be made to work better. Topical policy problems are used to motivate learning of key concepts and methods of economics. It engages, challenges and empowers students, and will provide them with the tools to articulate reasoned views on pressing policy problems. This project is the result of a worldwide collaboration between researchers, educators, and students who are committed to bringing the socially relevant insights of economics to a broader audience.KEY FEATURESESPP does not teach microeconomics as a body of knowledge separate from macroeconomicsStudents begin their study of economics by understanding that the economy is situated within society and the biosphereStudents study problems of identifying causation, not just correlation, through the use of natural experiments, lab experiments, and other quantitative methodsSocial interactions, modelled using simple game theory, and incomplete information, modelled using a series of principal-agent problems, are introduced from the beginning. As a result, phenomena studied by the other social sciences such as social norms and the exercise of power play a roleThe insights of diverse schools of thought, from Marx and the classical economists to Hayek and Schumpeter, play an integral part in the bookThe way economists think about public policy is central to ESPP. This is introduced in Units 2 and 3, rather than later in the course. |
data science for public policy: OECD Public Governance Reviews Behavioural Insights for Public Integrity Harnessing the Human Factor to Counter Corruption OECD, 2018-05-11 - Foreword - Executive summary - Introduction - The dynamics of moral decision making - Integrity in the context of social interactions - Applying behavioural insights to integrity policies - References |
data science for public policy: The Politics of Information Frank R. Baumgartner, Bryan D. Jones, 2015-01-02 How does the government decide what’s a problem and what isn’t? And what are the consequences of that process? Like individuals, Congress is subject to the “paradox of search.” If policy makers don’t look for problems, they won’t find those that need to be addressed. But if they carry out a thorough search, they will almost certainly find new problems—and with the definition of each new problem comes the possibility of creating a government program to address it. With The Politics of Attention, leading policy scholars Frank R. Baumgartner and Bryan D. Jones demonstrated the central role attention plays in how governments prioritize problems. Now, with The Politics of Information, they turn the focus to the problem-detection process itself, showing how the growth or contraction of government is closely related to how it searches for information and how, as an organization, it analyzes its findings. Better search processes that incorporate more diverse viewpoints lead to more intensive policymaking activity. Similarly, limiting search processes leads to declines in policy making. At the same time, the authors find little evidence that the factors usually thought to be responsible for government expansion—partisan control, changes in presidential leadership, and shifts in public opinion—can be systematically related to the patterns they observe. Drawing on data tracing the course of American public policy since World War II, Baumgartner and Jones once again deepen our understanding of the dynamics of American policy making. |
data science for public policy: Systematic Thinking for Social Action Alice M. Rivlin, 1971-07-01 How can we identify who benefits from government programs aimed at solving our social problem and who pays for them? With so many problems, how can we allocate scarce funds to promote the maximum well-being of our citizens? In this book, originally presented as the third series of H. Rowan Gaither Lectures in Systems Science at the University of California (Berkeley). Alice M. Rivlin examines the contributions that systematic analysis has made to decisionmaking in the government's social action programs—education, health, manpower training, and income maintenance. Drawing on her own experience in government, Mrs. Rivlin indicates where the analysts have been helpful in finding solutions and where—because of inadequate data or methods—they have been no help at all. Mrs. Rivlin concludes by urging the widespread implementation of social experimentation and acceptability by the federal government. The first in such a way as to permit valid conclusions about their effectiveness; the second would encourage the adoption of better ways of delivering services by making those who administer programs responsive to their clients. Underlying both is the requirement from comprehensive, reliable performance measures. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …