Advertisement
data science stock market: Adventures In Financial Data Science: The Empirical Properties Of Financial And Economic Data (Second Edition) Graham L Giller, 2022-06-27 This book provides insights into the true nature of financial and economic data, and is a practical guide on how to analyze a variety of data sources. The focus of the book is on finance and economics, but it also illustrates the use of quantitative analysis and data science in many different areas. Lastly, the book includes practical information on how to store and process data and provides a framework for data driven reasoning about the world.The book begins with entertaining tales from Graham Giller's career in finance, starting with speculating in UK government bonds at the Oxford Post Office, accidentally creating a global instant messaging system that went 'viral' before anybody knew what that meant, on being the person who forgot to hit 'enter' to run a hundred-million dollar statistical arbitrage system, what he decoded from his brief time spent with Jim Simons, and giving Michael Bloomberg a tutorial on Granger Causality.The majority of the content is a narrative of analytic work done on financial, economics, and alternative data, structured around both Dr Giller's professional career and some of the things that just interested him. The goal is to stimulate interest in predictive methods, to give accurate characterizations of the true properties of financial, economic and alternative data, and to share what Richard Feynman described as 'The Pleasure of Finding Things Out.' |
data science stock market: Take Stock Ellis Traub, 2000-10-25 Most people would like to find a way to double their money every five years without risky investments, endless research, stock trading and taxes on the trades. Ellis Traub will show you how. Making investing fun and simple, he shows investors a proven system for acquiring wealth through the process of investing in companies. True investors view stocks as they were intended, as part ownership of the companies. Over the long term, they expect their stock to grow in value, year after year, as their companies increase their earnings. Beginning investors can invest in individual companies - profitably and wisely - using the interactive, step-by-step process outlined in Take Stock: A Roadmap to Profiting from Your First Walk Down Wall Street. |
data science stock market: Monetizing Machine Learning Manuel Amunategui, Mehdi Roopaei, 2018-09-12 Take your Python machine learning ideas and create serverless web applications accessible by anyone with an Internet connection. Some of the most popular serverless cloud providers are covered in this book—Amazon, Microsoft, Google, and PythonAnywhere. You will work through a series of common Python data science problems in an increasing order of complexity. The practical projects presented in this book are simple, clear, and can be used as templates to jump-start many other types of projects. You will learn to create a web application around numerical or categorical predictions, understand the analysis of text, create powerful and interactive presentations, serve restricted access to data, and leverage web plugins to accept credit card payments and donations. You will get your projects into the hands of the world in no time. Each chapter follows three steps: modeling the right way, designing and developing a local web application, and deploying onto a popular and reliable serverless cloud provider. You can easily jump to or skip particular topics in the book. You also will have access to Jupyter notebooks and code repositories for complete versions of the code covered in the book. What You’ll Learn Extend your machine learning models using simple techniques to create compelling and interactive web dashboards Leverage the Flask web framework for rapid prototyping of your Python models and ideasCreate dynamic content powered by regression coefficients, logistic regressions, gradient boosting machines, Bayesian classifications, and more Harness the power of TensorFlow by exporting saved models into web applications Create rich web dashboards to handle complex real-time user input with JavaScript and Ajax to yield interactive and tailored contentCreate dashboards with paywalls to offer subscription-based accessAccess API data such as Google Maps, OpenWeather, etc.Apply different approaches to make sense of text data and return customized intelligence Build an intuitive and useful recommendation site to add value to users and entice them to keep coming back Utilize the freemium offerings of Google Analytics and analyze the results Take your ideas all the way to your customer's plate using the top serverless cloud providers Who This Book Is For Those with some programming experience with Python, code editing, and access to an interpreter in working order. The book is geared toward entrepreneurs who want to get their ideas onto the web without breaking the bank, small companies without an IT staff, students wanting exposure and training, and for all data science professionals ready to take things to the next level. |
data science stock market: Statistics for the Trading Floor Patrick Boyle, 2020-05-14 Statistics for the Trading Floor: Data Science for Investing is the best book on statistics for investing. Written for professionals by a professional trader and hedge fund manager, the book gives a thorough grounding in quantitative methods used by investing professionals. |
data science stock market: The Science Of Financial Market Trading Don K Mak, 2003-03-19 In this book, Dr Mak views the financial market from a scientific perspective. The book attempts to provide a realistic description of what the market is, and how future research should be developed. The market is a complex phenomenon, and can be forecasted only with errors — if that particular market can be forecasted at all.The book reviews the scientific literatures on the financial market and describes mathematical procedures which demonstrate that some markets are non-random. How the markets are modeled — phenomenologically and from first principle — is explained.It discusses indicators, which are quite objective, rather than price patterns, which are rather subjective. Similarities between indicators in market trading and operators in mathematics are noted, and particularly, between oscillator indicators and derivatives in Calculus. It illustrates why some indicators, e.g., Stochastics, have limited usage. Several new indicators are designed and tested on theoretical waveforms to check their validity and applicability. The indicators have a minimal time lag, which is significant for trading purposes. Common market behaviors like divergences between price and momentum are explained. A skipped convolution technique is introduced to allow traders to pick up market movements at an earlier time. The market is treated as a nonlinear phenomenon. Forecasting of when the market is going to turn is emphasized. |
data science stock market: Machine Learning for Algorithmic Trading Stefan Jansen, 2020-07-31 Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key FeaturesDesign, train, and evaluate machine learning algorithms that underpin automated trading strategiesCreate a research and strategy development process to apply predictive modeling to trading decisionsLeverage NLP and deep learning to extract tradeable signals from market and alternative dataBook Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learnLeverage market, fundamental, and alternative text and image dataResearch and evaluate alpha factors using statistics, Alphalens, and SHAP valuesImplement machine learning techniques to solve investment and trading problemsBacktest and evaluate trading strategies based on machine learning using Zipline and BacktraderOptimize portfolio risk and performance analysis using pandas, NumPy, and pyfolioCreate a pairs trading strategy based on cointegration for US equities and ETFsTrain a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes dataWho this book is for If you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required. |
data science stock market: Income And Wealth From Self-Directed Investing Ian Duncan MacDonald, 2019-09-17 In 2001, after an investment adviser lost $300,000 of Ian MacDonald`s money, he took what was left and self-managed it. His investment objective was to build a stock scoring program that would give him an annual dividend income worth 6% of his portfolio, while increasing the value of that portfolio every year by about 9% (his background was in building commercial risk scoring computer programs for the banks and other businesses). He succeeded in his objective. While he had developed that stock scoring program for his own use, in 2019 he used it to help an elderly lady who had suffered a catastrophic financial loss, due to am investment adviser`s greed. After much of her loss had been recovered and her monthly income had doubled, she told Ian MacDonald that he needed to write a book to help people like her who knew little about investing and could easily be taken advantage of . He wrote that book. It is called, Income and Wealth from Self-Directed Investing.He includes that PC stock scoring program with his 300 page book. To further help investors, in the last 100 pages of the book, are charts listing all the companies traded on the TSX that pay a dividend of 3.5% or more. Four sorts of the data in these charts is provided: by score, stock price, dividend percent and by company name. The data sorts make it easy and fast to identify and weigh which stocks are the best ones to add to your portfolio. Like the elderly widow, there are many who fear that they will outlive their life savings? They feel forced to use investment advisers because no one has shown them how to invest safely. Ian MacDonald`s book takes away the fear of investing by explaining, the following in easy to understand language: (1) The danger of entrusting your money to an investment adviser whose fees and hidden agenda could drain your savings.(2) Why investing in dividend paying common stock is the safest way for you to invest, as compared to bonds, mutual funds, etc. (3) How to open an online self-directed stock trading account without having to involve bank employees.(4) How to easily find for your portfolio the best twenty stocks for capital gain and the highest dividends.(5) How to find and sort potential stock purchases from best to worse, so you can pick the twenty best and safest.(6) How to verify that stocks have no harmful information attached to them that could potentially be a problem if purchased.(7) How to purchase a stock you have carefully chosen, in less than five minutes.(8) How to quickly and easily monitor your purchased stocks on a daily, monthly and quarterly basis.The stock market is not a casino and what Ian MacDonald teaches is not a get rich quick scheme. It is a logical, easy to understand method of investing. Since implementing his scoring system, his portfolio has grown by 300% while generating a steady ever growing retirement income. He thinks every investor should now know exactly what they are invested in and understand why they are invested in it. Through booming times and recessions there is no reason your self-directed portfolio can not generate a reliable monthly income and grow year-after-year. |
data science stock market: Head First Python Paul Barry, 2016-11-21 Want to learn the Python language without slogging your way through how-to manuals? With Head First Python, you’ll quickly grasp Python’s fundamentals, working with the built-in data structures and functions. Then you’ll move on to building your very own webapp, exploring database management, exception handling, and data wrangling. If you’re intrigued by what you can do with context managers, decorators, comprehensions, and generators, it’s all here. This second edition is a complete learning experience that will help you become a bonafide Python programmer in no time. Why does this book look so different? Based on the latest research in cognitive science and learning theory, Head First Pythonuses a visually rich format to engage your mind, rather than a text-heavy approach that puts you to sleep. Why waste your time struggling with new concepts? This multi-sensory learning experience is designed for the way your brain really works. |
data science stock market: Challenges and Applications of Data Analytics in Social Perspectives Sathiyamoorthi, V., Elci, Atilla, 2020-12-04 With exponentially increasing amounts of data accumulating in real-time, there is no reason why one should not turn data into a competitive advantage. While machine learning, driven by advancements in artificial intelligence, has made great strides, it has not been able to surpass a number of challenges that still prevail in the way of better success. Such limitations as the lack of better methods, deeper understanding of problems, and advanced tools are hindering progress. Challenges and Applications of Data Analytics in Social Perspectives provides innovative insights into the prevailing challenges in data analytics and its application on social media and focuses on various machine learning and deep learning techniques in improving practice and research. The content within this publication examines topics that include collaborative filtering, data visualization, and edge computing. It provides research ideal for data scientists, data analysts, IT specialists, website designers, e-commerce professionals, government officials, software engineers, social media analysts, industry professionals, academicians, researchers, and students. |
data science stock market: Data Science and Analytics Usha Batra, Nihar Ranjan Roy, Brajendra Panda, 2020-05-27 This two-volume set (CCIS 1229 and CCIS 1230) constitutes the refereed proceedings of the 5th International Conference on Recent Developments in Science, Engineering and Technology, REDSET 2019, held in Gurugram, India, in November 2019. The 74 revised full papers presented were carefully reviewed and selected from total 353 submissions. The papers are organized in topical sections on data centric programming; next generation computing; social and web analytics; security in data science analytics; big data analytics. |
data science stock market: Market Data Explained Marc Alvarez, 2011-04-01 Market Data Explained is intended to provide a guide to the universe of data content produced by the global capital markets on a daily basis. Commonly referred to as market data, the universe of content is very wide and the type of information correspondingly diverse. Jargon and acronyms are very common. As a result, users of marker data typically face difficulty in applying the content in analysis and business applications. This guide provides an independent framework for understanding this diversity and streamlining the process of referring to content and how it relates to today's business environment. The book achieves this goal by providing a consistent frame of reference for users of market data. As such, it is built around the concept of a data model – a single, coherent view of the capital markets independent of any one source, such as an exchange. In particular it delineates clearly between the actual data content and how it is delivered (i.e., realtime data streams versus reference data). It shows how the data relates across the universe of securities (i.e., stocks, bonds, derivatives etc.). In this way it provides a logical framework for understanding how new content can be added over time as the business develops. Special features: 1. Uniqueness – this is the first comprehensive catalog and taxonomy to be made available for a business audience 2. Industry Acceptance – the framework described in this book is implemented as a relational data model in the industry today and used by blue chip multinational firms 3. Comprehensiveness – there are no arbitrary distinctions made based on asset class or data type (the legacy approach). The model presented in this book is fully cross asset and makes no distinction between data types (i.e., realtime versus historical/reference data) or sources 4. Independence – the framework is an independent, objective overview of how the data content integrates to provide a coherent view of the data produced by the global capital markets on a daily and intra-day basis. It provides a logical framework for referring to the content and entities that are so intrinsic to this industry - First and only single, comprehensive desk reference to market data produced by the global capital markets on a daily basis - Provides a comprehensive catalog of the market data and a common structure for navigating the complex content and interrelationships - Provides a common taxonomy and naming conventions that handles the highly varied, geographically and language dependent nature of the content |
data science stock market: Machine Learning and Data Science Blueprints for Finance Hariom Tatsat, Sahil Puri, Brad Lookabaugh, 2020-10-01 Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You’ll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You’ll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations |
data science stock market: Stock price analysis through Statistical and Data Science tools: An Overview Vinaitheerthan Renganathan, 2021-04-30 Stock price analysis involves different methods such as fundamental analysis and technical analysis which is based on data related to price movement of the stock in the past. Price of the stock is affected by various factors such as company’s performance, current status of economy and political factor. These factors play an important role in supply and demand of the stock which makes the price to be volatile in the short term. Investors and stock traders aim to book profit through buying and selling the stocks. There are different statistical and data science tools are being used to predict the stock price. Data Science and Statistical tools assume only the stock price’s historical data in predicting the future stock price. Statistical tools include measures such as Graph and Charts which depicts the general trend and time series tools such as Auto Regressive Integrated Moving Averages (ARIMA) and regression analysis. Data Science tools include models like Decision Tree, Support Vector Machine (SVM), Artificial Neural Network (ANN) and Long Term and Short Term Memory (LSTM) Models. Current methods include carrying out sentiment analysis of tweets, comments and other social media discussion to extract the hidden sentiment expressed by the users which indicate the positive or negative sentiment towards the stock price and the company. The book provides an overview of the analyzing and predicting stock price movements using statistical and data science tools using R open source software with hypothetical stock data sets. It provides a short introduction to R software to enable the user to understand analysis part in the later part. The book will not go into details of suggesting when to purchase a stock or what at price. The tools presented in the book can be used as a guiding tool in decision making while buying or selling the stock. Vinaitheerthan Renganathan www.vinaitheerthan.com/book.php |
data science stock market: 2019 Scientific Meeting on Electrical Electronics and Biomedical Engineering and Computer Science (EBBT) IEEE Staff, 2019-04-24 EBBT 2019 s special topic is Deep Learning in Biomedical Sciences This conference will cover original and innovative scientific papers about 1D, 2D and or 3D signal processing acquired from diagnostic medical devices, feature extraction to assist diagnosis, classification and clustering for decision making The scope is not limited to diagnostic signal processing intelligent systems based on statistical data analysis, decision support systems and artificial neural networks, support vector machines, Bayes classifiers, k nearest neighborhood, k means algorithm applications, applied informatics and expert systems are also in the scope of the conference |
data science stock market: The Man Who Solved the Market Gregory Zuckerman, 2019-11-05 NEW YORK TIMES BESTSELLER Shortlisted for the Financial Times/McKinsey Business Book of the Year Award The unbelievable story of a secretive mathematician who pioneered the era of the algorithm--and made $23 billion doing it. Jim Simons is the greatest money maker in modern financial history. No other investor--Warren Buffett, Peter Lynch, Ray Dalio, Steve Cohen, or George Soros--can touch his record. Since 1988, Renaissance's signature Medallion fund has generated average annual returns of 66 percent. The firm has earned profits of more than $100 billion; Simons is worth twenty-three billion dollars. Drawing on unprecedented access to Simons and dozens of current and former employees, Zuckerman, a veteran Wall Street Journal investigative reporter, tells the gripping story of how a world-class mathematician and former code breaker mastered the market. Simons pioneered a data-driven, algorithmic approach that's sweeping the world. As Renaissance became a market force, its executives began influencing the world beyond finance. Simons became a major figure in scientific research, education, and liberal politics. Senior executive Robert Mercer is more responsible than anyone else for the Trump presidency, placing Steve Bannon in the campaign and funding Trump's victorious 2016 effort. Mercer also impacted the campaign behind Brexit. The Man Who Solved the Market is a portrait of a modern-day Midas who remade markets in his own image, but failed to anticipate how his success would impact his firm and his country. It's also a story of what Simons's revolution means for the rest of us. |
data science stock market: Bubbleology Kevin Hassett, 2002-07-23 There are only two types of stocks: those safe from bubbles and those that are not. This is a fact of investing many discovered as they saw their fabulous gains whittled away by the extreme calamity of the Internet sector. But what about the future? Is there a way for investors to capture the enormous potential for profit that exists at the frontier of the economy, the place where innovation and genius operate, without placing their fortunes in jeopardy? Is there a way to evaluate price increases—and declines—and identify whether they are happening for good or bad reasons? Bubbleology makes it possible to separate the winners from the losers. It is a brilliant, practical, and original analysis of the stock market that bashes the conventional wisdom about bubbles, showing that such famous examples as Tulipomania were not, in fact, bubbles at all. Bubbleology shows that the traditional way of evaluating risk—equating it with volatility—is inherently flawed and incomplete. If a stock fluctuates a lot in price it is regarded as risky. If the price is stable, then it is not. What this simplistic way of thinking leaves out is the simple fact that companies trying something completely new that may fundamentally alter the economic landscape are operating at the frontier. The stock of such a company swims in a sea of ambiguity, its circumstances uncertain, since there is little to provide guidance about the future. But when nobody knows for sure what will happen, pundits tell us again about Tulipomania, the South Seas Bubble, and now the debacle of the Internet to scare investors away from potentially enormous profits. To realize those profits, however, investors have to understand the role that uncertainty and ambiguity—the absence of reliable information about future events—play in the modern stock market. Those who equate ambiguity with bubbles will miss the great opportunities of the future. Bubbleology provides a new way to observe what is really going on in the market, enabling you to understand whether a stock or a sector is suspicious—whether it is in a bubble and therefore something to be avoided. Finding bubbles requires knowing where to look and what to look for. Bubbleology will help you avoid both streaming into speculative manias and shying away from perfectly good business opportunities. It tells you why you need to avoid both pontificating pundits and overconfident stock analysts. With this unique and forward-thinking book, you can inspect suspicious stocks, accurately discern risk, and diagnose a blossoming bubble before it vanishes along with your money. |
data science stock market: Data Mining Algorithms Pawel Cichosz, 2015-01-27 Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles. The author presents many of the important topics and methodologies widely used in data mining, whilst demonstrating the internal operation and usage of data mining algorithms using examples in R. |
data science stock market: How can I get started Investing in the Stock Market Lokesh Badolia, 2016-10-27 This book is well-researched by the author, in which he has shared the experience and knowledge of some very much experienced and renowned entities from stock market. We want that everybody should have the knowledge regarding the different aspects of stock market, which would encourage people to invest and earn without any fear. This book is just a step forward toward the knowledge of market. |
data science stock market: Data Science and Data Analytics Amit Kumar Tyagi, 2021-09-22 Data science is a multi-disciplinary field that uses scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured (labeled) and unstructured (unlabeled) data. It is the future of Artificial Intelligence (AI) and a necessity of the future to make things easier and more productive. In simple terms, data science is the discovery of data or uncovering hidden patterns (such as complex behaviors, trends, and inferences) from data. Moreover, Big Data analytics/data analytics are the analysis mechanisms used in data science by data scientists. Several tools, such as Hadoop, R, etc., are used to analyze this large amount of data to predict valuable information and for decision-making. Note that structured data can be easily analyzed by efficient (available) business intelligence tools, while most of the data (80% of data by 2020) is in an unstructured form that requires advanced analytics tools. But while analyzing this data, we face several concerns, such as complexity, scalability, privacy leaks, and trust issues. Data science helps us to extract meaningful information or insights from unstructured or complex or large amounts of data (available or stored virtually in the cloud). Data Science and Data Analytics: Opportunities and Challenges covers all possible areas, applications with arising serious concerns, and challenges in this emerging field in detail with a comparative analysis/taxonomy. FEATURES Gives the concept of data science, tools, and algorithms that exist for many useful applications Provides many challenges and opportunities in data science and data analytics that help researchers to identify research gaps or problems Identifies many areas and uses of data science in the smart era Applies data science to agriculture, healthcare, graph mining, education, security, etc. Academicians, data scientists, and stockbrokers from industry/business will find this book useful for designing optimal strategies to enhance their firm’s productivity. |
data science stock market: Python for Finance Yves J. Hilpisch, 2018-12-05 The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks. |
data science stock market: MarketPsych Richard L. Peterson, Frank F. Murtha, 2010-07-30 An investor's guide to understanding the most elusive (yet most important) aspect of successful investing - yourself. Why is it that the investing performance of so many smart people reliably and predictably falls short? The answer is not that they know too little about the markets. In fact, they know too little about themselves. Combining the latest findings from the academic fields of behavioral finance and experimental psychology with the down-and-dirty real-world wisdom of successful investors, Drs. Richard Peterson and Frank Murtha guide both new and experienced investors through the psychological learning process necessary to achieve their financial goals. In an easy and entertaining style that masks the book’s scientific rigor, the authors make complex scientific insights readily understandable and actionable, shattering a number of investing myths along the way. You will gain understanding of your true investing motivations, learn to avoid the unseen forces that subvert your performance, and build your investor identity - the foundation for long-lasting investing success. Replete with humorous games, insightful self-assessments, entertaining exercises, and concrete planning tools, this book goes beyond mere education. MarketPsych: How to Manage Fear and Build Your Investor Identity functions as a psychological outfitter for your unique investing journey, providing the tools, training and equipment to help you navigate the right paths, stay on them, and see your journey through to success. |
data science stock market: Data Smart John W. Foreman, 2013-10-31 Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the data scientist, toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know. |
data science stock market: Algorithms for Data Science Brian Steele, John Chandler, Swarna Reddy, 2016-12-25 This textbook on practical data analytics unites fundamental principles, algorithms, and data. Algorithms are the keystone of data analytics and the focal point of this textbook. Clear and intuitive explanations of the mathematical and statistical foundations make the algorithms transparent. But practical data analytics requires more than just the foundations. Problems and data are enormously variable and only the most elementary of algorithms can be used without modification. Programming fluency and experience with real and challenging data is indispensable and so the reader is immersed in Python and R and real data analysis. By the end of the book, the reader will have gained the ability to adapt algorithms to new problems and carry out innovative analyses. This book has three parts:(a) Data Reduction: Begins with the concepts of data reduction, data maps, and information extraction. The second chapter introduces associative statistics, the mathematical foundation of scalable algorithms and distributed computing. Practical aspects of distributed computing is the subject of the Hadoop and MapReduce chapter.(b) Extracting Information from Data: Linear regression and data visualization are the principal topics of Part II. The authors dedicate a chapter to the critical domain of Healthcare Analytics for an extended example of practical data analytics. The algorithms and analytics will be of much interest to practitioners interested in utilizing the large and unwieldly data sets of the Centers for Disease Control and Prevention's Behavioral Risk Factor Surveillance System.(c) Predictive Analytics Two foundational and widely used algorithms, k-nearest neighbors and naive Bayes, are developed in detail. A chapter is dedicated to forecasting. The last chapter focuses on streaming data and uses publicly accessible data streams originating from the Twitter API and the NASDAQ stock market in the tutorials. This book is intended for a one- or two-semester course in data analytics for upper-division undergraduate and graduate students in mathematics, statistics, and computer science. The prerequisites are kept low, and students with one or two courses in probability or statistics, an exposure to vectors and matrices, and a programming course will have no difficulty. The core material of every chapter is accessible to all with these prerequisites. The chapters often expand at the close with innovations of interest to practitioners of data science. Each chapter includes exercises of varying levels of difficulty. The text is eminently suitable for self-study and an exceptional resource for practitioners. |
data science stock market: Information and Communication Technology for Intelligent Systems Tomonobu Senjyu, Parikshit N. Mahalle, Thinagaran Perumal, Amit Joshi, 2020-10-29 This book gathers papers addressing state-of-the-art research in all areas of information and communication technologies and their applications in intelligent computing, cloud storage, data mining and software analysis. It presents the outcomes of the Fourth International Conference on Information and Communication Technology for Intelligent Systems, which was held in Ahmedabad, India. Divided into two volumes, the book discusses the fundamentals of various data analysis techniques and algorithms, making it a valuable resource for researchers and practitioners alike. |
data science stock market: Technical Analysis Charles D. Kirkpatrick II, Julie R. Dahlquist, 2010-11-08 Already the field's most comprehensive, reliable, and objective guidebook, Technical Analysis: The Complete Resource for Financial Market Technicians, Second Edition has been thoroughly updated to reflect the field's latest advances. Selected by the Market Technicians Association as the official companion to its prestigious Chartered Market Technician (CMT) program, this book systematically explains the theory of technical analysis, presenting academic evidence both for and against it. Using hundreds of fully updated illustrations, the authors explain the analysis of both markets and individual issues, and present complete investment systems and portfolio management plans. They present authoritative, up-to-date coverage of tested sentiment, momentum indicators, seasonal affects, flow of funds, testing systems, risk mitigation strategies, and many other topics. This edition thoroughly covers the latest advances in pattern recognition, market analysis, and systems management. The authors introduce new confidence tests; cover increasingly popular methods such as Kagi, Renko, Kase, Ichimoku, Clouds, and DeMark indicators; present innovations in exit stops, portfolio selection, and testing; and discuss the implications of behavioral bias for technical analysis. They also reassess old formulas and methods, such as intermarket relationships, identifying pitfalls that emerged during the recent market decline. For traders, researchers, and serious investors alike, this is the definitive book on technical analysis. |
data science stock market: Practical Data Science Andreas François Vermeulen, 2018-02-21 Learn how to build a data science technology stack and perform good data science with repeatable methods. You will learn how to turn data lakes into business assets. The data science technology stack demonstrated in Practical Data Science is built from components in general use in the industry. Data scientist Andreas Vermeulen demonstrates in detail how to build and provision a technology stack to yield repeatable results. He shows you how to apply practical methods to extract actionable business knowledge from data lakes consisting of data from a polyglot of data types and dimensions. What You'll Learn Become fluent in the essential concepts and terminology of data science and data engineering Build and use a technology stack that meets industry criteria Master the methods for retrieving actionable business knowledge Coordinate the handling of polyglot data types in a data lake for repeatable results Who This Book Is For Data scientists and data engineers who are required to convert data from a data lake into actionable knowledge for their business, and students who aspire to be data scientists and data engineers |
data science stock market: Data Science Zhiwen Yu, Qilong Han, Hongzhi Wang, Bin Guo, Xiaokang Zhou, Xianhua Song, Zeguang Lu, 2023-09-14 This two-volume set (CCIS 1879 and 1880) constitutes the refereed proceedings of the 9th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2023 held in Harbin, China, during September 22–24, 2023. The 52 full papers and 14 short papers presented in these two volumes were carefully reviewed and selected from 244 submissions. The papers are organized in the following topical sections: Part I: Applications of Data Science, Big Data Management and Applications, Big Data Mining and Knowledge Management, Data Visualization, Data-driven Security, Infrastructure for Data Science, Machine Learning for Data Science and Multimedia Data Management and Analysis. Part II: Data-driven Healthcare, Data-driven Smart City/Planet, Social Media and Recommendation Systems and Education using big data, intelligent computing or data mining, etc. |
data science stock market: Data Science Rui Mao, Hongzhi Wang, Xiaolan Xie, Zeguang Lu, 2019-09-13 This two volume set (CCIS 1058 and 1059) constitutes the refereed proceedings of the 5th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2019 held in Guilin, China, in September 2019. The 104 revised full papers presented in these two volumes were carefully reviewed and selected from 395 submissions. The papers cover a wide range of topics related to basic theory and techniques for data science including data mining; data base; net work; security; machine learning; bioinformatics; natural language processing; software engineering; graphic images; system; education; application. |
data science stock market: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians. |
data science stock market: The Predictors Thomas A. Bass, 2000-11 Bass relates how two rumpled physicists set up computers in an adobe house in Santa Fe for a start-up company, and follows their journey into the centers of financial power where the predictors find investors and finally go live with real money. |
data science stock market: The Nature of Statistical Learning Theory Vladimir Vapnik, 2013-06-29 The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists. |
data science stock market: Data Science and Its Applications Aakanksha Sharaff, G R Sinha, 2021-08-18 The term data being mostly used, experimented, analyzed, and researched, Data Science and its Applications finds relevance in all domains of research studies including science, engineering, technology, management, mathematics, and many more in wide range of applications such as sentiment analysis, social medial analytics, signal processing, gene analysis, market analysis, healthcare, bioinformatics etc. The book on Data Science and its applications discusses about data science overview, scientific methods, data processing, extraction of meaningful information from data, and insight for developing the concept from different domains, highlighting mathematical and statistical models, operations research, computer programming, machine learning, data visualization, pattern recognition and others. The book also highlights data science implementation and evaluation of performance in several emerging applications such as information retrieval, cognitive science, healthcare, and computer vision. The data analysis covers the role of data science depicting different types of data such as text, image, biomedical signal etc. useful for a wide range of real time applications. The salient features of the book are: Overview, Challenges and Opportunities in Data Science and Real Time Applications Addressing Big Data Issues Useful Machine Learning Methods Disease Detection and Healthcare Applications utilizing Data Science Concepts and Deep Learning Applications in Stock Market, Education, Behavior Analysis, Image Captioning, Gene Analysis and Scene Text Analysis Data Optimization Due to multidisciplinary applications of data science concepts, the book is intended for wide range of readers that include Data Scientists, Big Data Analysists, Research Scholars engaged in Data Science and Machine Learning applications. |
data science stock market: Introduction to Financial Forecasting in Investment Analysis John B. Guerard, Jr., 2013-01-04 Forecasting—the art and science of predicting future outcomes—has become a crucial skill in business and economic analysis. This volume introduces the reader to the tools, methods, and techniques of forecasting, specifically as they apply to financial and investing decisions. With an emphasis on earnings per share (eps), the author presents a data-oriented text on financial forecasting, understanding financial data, assessing firm financial strategies (such as share buybacks and R&D spending), creating efficient portfolios, and hedging stock portfolios with financial futures. The opening chapters explain how to understand economic fluctuations and how the stock market leads the general economic trend; introduce the concept of portfolio construction and how movements in the economy influence stock price movements; and introduce the reader to the forecasting process, including exponential smoothing and time series model estimations. Subsequent chapters examine the composite index of leading economic indicators (LEI); review financial statement analysis and mean-variance efficient portfolios; and assess the effectiveness of analysts’ earnings forecasts. Using data from such firms as Intel, General Electric, and Hitachi, Guerard demonstrates how forecasting tools can be applied to understand the business cycle, evaluate market risk, and demonstrate the impact of global stock selection modeling and portfolio construction. |
data science stock market: Data Science and Machine Learning with Python Gurpreet Singh Josan, Jagroop Kaur, 2024-04-06 Data Science and Machine Learning are two interconnected fields that play a pivotal role in modern technological advancements. Data science involves extracting insights and knowledge from vast amounts of data using various tools and techniques. This includes data collection, cleaning, analysis, and interpretation to uncover valuable patterns and trends. On the other hand, machine learning is a subset of artificial intelligence (AI) that focuses on developing algorithms and models capable of learning from data to make predictions and decisions. Machine learning algorithms can automatically improve their performance over time by learning from new data, making them crucial for tasks such as image recognition, natural language processing, and predictive analytics. Together, data science and machine learning empower businesses and researchers to leverage data-driven insights for informed decision-making and innovation across diverse domains. This book is intended for the first course in Data Science and Machine Learning and covers the required topics in sufficient depth to meet the requirements of the readers. |
data science stock market: Cracking the Data Science Interview Maverick Lin, 2019-12-17 Cracking the Data Science Interview is the first book that attempts to capture the essence of data science in a concise, compact, and clean manner. In a Cracking the Coding Interview style, Cracking the Data Science Interview first introduces the relevant concepts, then presents a series of interview questions to help you solidify your understanding and prepare you for your next interview. Topics include: - Necessary Prerequisites (statistics, probability, linear algebra, and computer science) - 18 Big Ideas in Data Science (such as Occam's Razor, Overfitting, Bias/Variance Tradeoff, Cloud Computing, and Curse of Dimensionality) - Data Wrangling (exploratory data analysis, feature engineering, data cleaning and visualization) - Machine Learning Models (such as k-NN, random forests, boosting, neural networks, k-means clustering, PCA, and more) - Reinforcement Learning (Q-Learning and Deep Q-Learning) - Non-Machine Learning Tools (graph theory, ARIMA, linear programming) - Case Studies (a look at what data science means at companies like Amazon and Uber) Maverick holds a bachelor's degree from the College of Engineering at Cornell University in operations research and information engineering (ORIE) and a minor in computer science. He is the author of the popular Data Science Cheatsheet and Data Engineering Cheatsheet on GCP and has previous experience in data science consulting for a Fortune 500 company focusing on fraud analytics. |
data science stock market: Empirical Asset Pricing Wayne Ferson, 2019-03-12 An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals. |
data science stock market: Handbook of Research on Smart Technology Models for Business and Industry Thomas, J. Joshua, Fiore, Ugo, Lechuga, Gilberto Perez, Kharchenko, Valeriy, Vasant, Pandian, 2020-06-19 Advances in machine learning techniques and ever-increasing computing power has helped create a new generation of hardware and software technologies with practical applications for nearly every industry. As the progress has, in turn, excited the interest of venture investors, technology firms, and a growing number of clients, implementing intelligent automation in both physical and information systems has become a must in business. Handbook of Research on Smart Technology Models for Business and Industry is an essential reference source that discusses relevant abstract frameworks and the latest experimental research findings in theory, mathematical models, software applications, and prototypes in the area of smart technologies. Featuring research on topics such as digital security, renewable energy, and intelligence management, this book is ideally designed for machine learning specialists, industrial experts, data scientists, researchers, academicians, students, and business professionals seeking coverage on current smart technology models. |
data science stock market: Data Science and Machine Learning Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman, 2019-11-20 Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code |
data science stock market: 2020 IEEE 2nd International Conference on Computer Science and Educational Informatization (CSEI) IEEE Staff, 2020-06-12 At present, in the context of Internet , driven by the demand of economy and society and the rapid development of new technology and ideas such as cloud computing, big data, Internet of Things, mobile Internet, artificial intelligence and so on, information technology has quickly stepped into the intelligent stage and changed people s thinking, production, living, and learning styles profoundly, which also promotes education to realize great reform and innovation Educational informatization has achieved rapid development under the guidance of the core idea, deeper integration of information technology and education practice It is an irresistible tendency of educational development through using educational information to improve educational modernizations and using information technology to change traditional educational model |
data science stock market: Data Science for Economics and Finance Sergio Consoli, Diego Reforgiato Recupero, Michaela Saisana, 2021 This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications. |
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)
Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …
Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …
Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …
Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …
Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …
Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …
Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …
Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …
Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …