Data Science For Sales

Advertisement



  data science for sales: Marketing and Sales Analytics Cesar A. Brea, 2014 Today, an effective marketing analytics executive is even more important than a brilliant data scientist. That's because successful analytics investments now require managerial orchestration of many elements that go far beyond conventional definitions of analytics. Marketing and Sales Analytics examines the experiences of sales and marketing leaders and practitioners who have successfully built high value analytics capabilities in multiple industries. Then, drawing on their experiences, top analytics consultant Cesar Brea introduces overarching frameworks and specific tools that can help you achieve the same levels of success in your own organization. Brea shows how to: Establish the ecosystemic conditions for analytic success Reconcile the diverse perspectives that impact analytics initiatives (Business v. IT, Sales v. Marketing, Analysts v. Creatives v. Managers, and Everyone v. Finance) Decide what success will look like Agree on the questions to ask Organize both internal and external data Establish operational flexibility, and balance flexibility with efficiency Recruit the right people and organize them optimally Intelligently decide what to do yourself, and what to hire vendors for Balance research, analytics, and testing Implement proven research, analytics, and testing strategies Deliver results through storytelling (and recognize its limitations) Control the biases that creep into analytics research Maintain momentum, implement governance, and keep score
  data science for sales: The Power of Sales Analytics Andris A. Zoltners, Prabhakant Sinha, Sally E. Lorimer, 2015-03 Written by over 20 thought leaders from ZS Associates, Inc., The Power of Sales Analytics shares strategic insights, pragmatic advice, and illustrative case studies and approaches for using analytics to support sales force decisions and drive results. The authors describe how leading companies have successfully used analytics to improve key sales force effectiveness drivers such as customer targeting, sales process design, sales force size and structure, territory design, talent management, incentive compensation, goal setting, and performance management. The book also has a blueprint for implementing critical analytic capabilities cost-effectively by assembling the right combination of internal and external resources. The Power of Sales Analytics is edited by the founders of ZS Associates, Andris A. Zoltners and Prabhakant Sinha, who have personally consulted with more than 200 companies in over 20 countries, and business writer Sally E. Lorimer. As experts in the field of sales analytics, the editors have helped the sales leaders of Fortune 500 companies, as well as smaller entrepreneurial businesses, tap into the power of analytics to enable smarter sales strategies, support more efficient operations, facilitate more effective execution, and ultimately drive results. They are also coauthors of numerous academic articles and books on sales force management, including Building a Winning Sales Force, Accelerating Sales Force Performance, Sales Force Design for Strategic Advantage, The Complete Guide to Sales Force Incentive Compensation, and Building a Winning Sales Management Team. In addition to cofounding ZS Associates, Zoltners is a professor emeritus of marketing at Northwestern University s Kellogg School of Management, and Sinha is a former Kellogg faculty member. Both continue to teach sales executives Zoltners at Kellogg and Sinha at the Indian School of Business and the Gordon Institute of Business Science in South Africa. ZS Associates is a global leader in sales and marketing consulting, outsourcing, technology, and software. For more than 30 years, ZS has helped companies across a range of industries deliver greater impact through their sales and marketing investments and operations.
  data science for sales: Predictive Analytics Eric Siegel, 2016-01-12 Mesmerizing & fascinating... —The Seattle Post-Intelligencer The Freakonomics of big data. —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a
  data science for sales: Machine Learning and Artificial Intelligence in Marketing and Sales Niladri Syam, Rajeeve Kaul, 2021-03-10 Machine Learning and Artificial Intelligence in Marketing and Sales explores the ideas, and the statistical and mathematical concepts, behind Artificial Intelligence (AI) and machine learning models, as applied to marketing and sales, without getting lost in the details of mathematical derivations and computer programming.
  data science for sales: AI in Marketing, Sales and Service Peter Gentsch, 2018-10-22 AI and Algorithmics have already optimized and automated production and logistics processes. Now it is time to unleash AI on the administrative, planning and even creative procedures in marketing, sales and management. This book provides an easy-to-understand guide to assessing the value and potential of AI and Algorithmics. It systematically draws together the technologies and methods of AI with clear business scenarios on an entrepreneurial level. With interviews and case studies from those cutting edge businesses and executives who are already leading the way, this book shows you: how customer and market potential can be automatically identified and profiled; how media planning can be intelligently automated and optimized with AI and Big Data; how (chat)bots and digital assistants can make communication between companies and consumers more efficient and smarter; how you can optimize Customer Journeys based on Algorithmics and AI; and how to conduct market research in more efficient and smarter way. A decade from now, all businesses will be AI businesses – Gentsch shows you how to make sure yours makes that transition better than your competitors.
  data science for sales: Data Science for Marketing Analytics Mirza Rahim Baig, Gururajan Govindan, Vishwesh Ravi Shrimali, 2021-09-07 Turbocharge your marketing plans by making the leap from simple descriptive statistics in Excel to sophisticated predictive analytics with the Python programming language Key FeaturesUse data analytics and machine learning in a sales and marketing contextGain insights from data to make better business decisionsBuild your experience and confidence with realistic hands-on practiceBook Description Unleash the power of data to reach your marketing goals with this practical guide to data science for business. This book will help you get started on your journey to becoming a master of marketing analytics with Python. You'll work with relevant datasets and build your practical skills by tackling engaging exercises and activities that simulate real-world market analysis projects. You'll learn to think like a data scientist, build your problem-solving skills, and discover how to look at data in new ways to deliver business insights and make intelligent data-driven decisions. As well as learning how to clean, explore, and visualize data, you'll implement machine learning algorithms and build models to make predictions. As you work through the book, you'll use Python tools to analyze sales, visualize advertising data, predict revenue, address customer churn, and implement customer segmentation to understand behavior. By the end of this book, you'll have the knowledge, skills, and confidence to implement data science and machine learning techniques to better understand your marketing data and improve your decision-making. What you will learnLoad, clean, and explore sales and marketing data using pandasForm and test hypotheses using real data sets and analytics toolsVisualize patterns in customer behavior using MatplotlibUse advanced machine learning models like random forest and SVMUse various unsupervised learning algorithms for customer segmentationUse supervised learning techniques for sales predictionEvaluate and compare different models to get the best outcomesOptimize models with hyperparameter tuning and SMOTEWho this book is for This marketing book is for anyone who wants to learn how to use Python for cutting-edge marketing analytics. Whether you're a developer who wants to move into marketing, or a marketing analyst who wants to learn more sophisticated tools and techniques, this book will get you on the right path. Basic prior knowledge of Python and experience working with data will help you access this book more easily.
  data science for sales: The Science of Selling David Hoffeld, 2022-02-08 The Revolutionary Sales Approach Scientifically Proven to Dramatically Improve Your Sales and Business Success Blending cutting-edge research in social psychology, neuroscience, and behavioral economics, The Science of Selling shows you how to align the way you sell with how our brains naturally form buying decisions, dramatically increasing your ability to earn more sales. Unlike other sales books, which primarily rely on anecdotal evidence and unproven advice, Hoffeld’s evidence-based approach connects the dots between science and situations salespeople and business leaders face every day to help you consistently succeed, including proven ways to: - Engage buyers’ emotions to increase their receptiveness to you and your ideas - Ask questions that line up with how the brain discloses information - Lock in the incremental commitments that lead to a sale - Create positive influence and reduce the sway of competitors - Discover the underlying causes of objections and neutralize them - Guide buyers through the necessary mental steps to make purchasing decisions Packed with advice and anecdotes, The Science of Selling is an essential resource for anyone looking to succeed in today's cutthroat selling environment, advance their business goals, or boost their ability to influence others. **Named one of The 20 Most Highly-Rated Sales Books of All Time by HubSpot
  data science for sales: Creating Value with Data Analytics in Marketing Peter C. Verhoef, Edwin Kooge, Natasha Walk, Jaap E. Wieringa, 2021-11-07 The key competing texts are practitioner-focused ‘how to’ guides, whilst our book combines rigorous theory with practical insight and examples, with authors from both the academic and business world, making it more adoptable as a student text; Unlike other books on the subject, this has a customer focus and an exploration of how big data can add value to customers as well as organisations; Enables readers to move from big data to big solutions by demonstrating how to integrate data analytics into specific goals and processes for implementation; Highly successful and well regarded both for students and practitioners
  data science for sales: Predictive Analytics, Data Mining and Big Data S. Finlay, 2014-07-01 This in-depth guide provides managers with a solid understanding of data and data trends, the opportunities that it can offer to businesses, and the dangers of these technologies. Written in an accessible style, Steven Finlay provides a contextual roadmap for developing solutions that deliver benefits to organizations.
  data science for sales: Data Science for Business With R Jeffrey S. Saltz, Jeffrey M. Stanton, 2021-02-03 Data Science for Business with R, written by Jeffrey S. Saltz and Jeffrey M. Stanton, focuses on the concepts foundational for students starting a business analytics or data science degree program. To keep the book practical and applied, the authors feature a running case using a global airline business’s customer survey dataset to illustrate how to turn data in business decisions, in addition to numerous examples throughout. To aid in usability beyond the classroom, the text features full integration of freely-available R and RStudio software, one of the most popular data science tools available. Designed for students with little to no experience in related areas like computer science, the book chapters follow a logical order from introduction and installation of R and RStudio, working with data architecture, undertaking data collection, performing data analysis, and transitioning to data archiving and presentation. Each chapter follows a familiar structure, starting with learning objectives and background, following the basic steps of functions alongside simple examples, applying these functions to the case study, and ending with chapter challenge questions, sources, and a list of R functions so students know what to expect in each step of their data science course. Data Science for Business with R provides readers with a straightforward and applied guide to this new and evolving field.
  data science for sales: Data Science for Business Foster Provost, Tom Fawcett, 2013-07-27 Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the data-analytic thinking necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates
  data science for sales: Hands-On Data Science for Marketing Yoon Hyup Hwang, 2019-03-29 Optimize your marketing strategies through analytics and machine learning Key FeaturesUnderstand how data science drives successful marketing campaignsUse machine learning for better customer engagement, retention, and product recommendationsExtract insights from your data to optimize marketing strategies and increase profitabilityBook Description Regardless of company size, the adoption of data science and machine learning for marketing has been rising in the industry. With this book, you will learn to implement data science techniques to understand the drivers behind the successes and failures of marketing campaigns. This book is a comprehensive guide to help you understand and predict customer behaviors and create more effectively targeted and personalized marketing strategies. This is a practical guide to performing simple-to-advanced tasks, to extract hidden insights from the data and use them to make smart business decisions. You will understand what drives sales and increases customer engagements for your products. You will learn to implement machine learning to forecast which customers are more likely to engage with the products and have high lifetime value. This book will also show you how to use machine learning techniques to understand different customer segments and recommend the right products for each customer. Apart from learning to gain insights into consumer behavior using exploratory analysis, you will also learn the concept of A/B testing and implement it using Python and R. By the end of this book, you will be experienced enough with various data science and machine learning techniques to run and manage successful marketing campaigns for your business. What you will learnLearn how to compute and visualize marketing KPIs in Python and RMaster what drives successful marketing campaigns with data scienceUse machine learning to predict customer engagement and lifetime valueMake product recommendations that customers are most likely to buyLearn how to use A/B testing for better marketing decision makingImplement machine learning to understand different customer segmentsWho this book is for If you are a marketing professional, data scientist, engineer, or a student keen to learn how to apply data science to marketing, this book is what you need! It will be beneficial to have some basic knowledge of either Python or R to work through the examples. This book will also be beneficial for beginners as it covers basic-to-advanced data science concepts and applications in marketing with real-life examples.
  data science for sales: Data Science for Marketing Analytics Tommy Blanchard, Debasish Behera, Pranshu Bhatnagar, 2019-03-30 Explore new and more sophisticated tools that reduce your marketing analytics efforts and give you precise results Key FeaturesStudy new techniques for marketing analyticsExplore uses of machine learning to power your marketing analysesWork through each stage of data analytics with the help of multiple examples and exercisesBook Description Data Science for Marketing Analytics covers every stage of data analytics, from working with a raw dataset to segmenting a population and modeling different parts of the population based on the segments. The book starts by teaching you how to use Python libraries, such as pandas and Matplotlib, to read data from Python, manipulate it, and create plots, using both categorical and continuous variables. Then, you'll learn how to segment a population into groups and use different clustering techniques to evaluate customer segmentation. As you make your way through the chapters, you'll explore ways to evaluate and select the best segmentation approach, and go on to create a linear regression model on customer value data to predict lifetime value. In the concluding chapters, you'll gain an understanding of regression techniques and tools for evaluating regression models, and explore ways to predict customer choice using classification algorithms. Finally, you'll apply these techniques to create a churn model for modeling customer product choices. By the end of this book, you will be able to build your own marketing reporting and interactive dashboard solutions. What you will learnAnalyze and visualize data in Python using pandas and MatplotlibStudy clustering techniques, such as hierarchical and k-means clusteringCreate customer segments based on manipulated data Predict customer lifetime value using linear regressionUse classification algorithms to understand customer choiceOptimize classification algorithms to extract maximal informationWho this book is for Data Science for Marketing Analytics is designed for developers and marketing analysts looking to use new, more sophisticated tools in their marketing analytics efforts. It'll help if you have prior experience of coding in Python and knowledge of high school level mathematics. Some experience with databases, Excel, statistics, or Tableau is useful but not necessary.
  data science for sales: Data Science For Dummies Lillian Pierson, 2021-08-20 Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today.
  data science for sales: Product Sense Peter Knudson, Braxton Bragg, 2021-07-12 Attempting to land a new job in product management is daunting. For starters, there have been no comprehensive blueprints for success. The interview process is grueling. Few candidates receive offers. Product Sense is the only comprehensive, yet accessible, resource available to help navigate a complex process and succeed an a hyper-competitive market. What will you learn from this book? The required PM common traits - ones that all PMs need to embody to get a job (regardless of industry, company, or product). The single, most crucial PM problem -What it is, why it is key to the role, and how to tackle it in four steps. Master our brand new Compass Framework - We designed our own proprietary interview framework from the ground up, which you can use to navigate product sense, execution, and leadership PM interview questions. How to get a job - A step-by-step hand-holding on what to do to land the most desired roles. Including take-home assignments, recruiter & hiring manager screens, and crafting your unique narrative - your PM Superpower. What's also inside? A detailed breakdown of the hiring criteria for PMs at FAANG and other tech companies Super-detailed example answers to tough PM interview case questions. An inside look at PM. Dozens of first-hand stories, interviews, real life examples, and no-fluff advice A robust glossary of PM terms used throughout the industry for easy reference This book will benefit those who are considering becoming PMs, those who are attempting to switch into product management from another role, or folks who are already PMs but want to be most prepared when applying for a new job. Here's what readers say about Product Sense: Product Sense helped me understand if PM is the right career path for me. Easy to read, clear, concise, and jam-packed full of insight and examples that illustrate all the concepts, this is the perfect starting point for anyone new to the field, and goes well beyond that for those looking to advance their career. Peter is one of the best strategic and tactical product minds I've ever worked with. For that reason, I'm not at all surprised that what he and Braxton have written here is a definitive guide to Product Management in today's ultra-competitive market. After reading Cracking the PM Interview, I was still lost as to how to structure my answers to case questions. While I understand that there is no right way to answer these interview questions, I appreciated that Product Sense gave me firm and clear guidance, walking me through the basics of PM thinking and how to adopt it in my interview answers. It was reassuring to see that the best mock interviews have all of the elements of Product Sense's Compass Framework. If CTPMI is the first step to prepare for landing a PM Role, then Product Sense is definitely the second step.
  data science for sales: A Hands-On Introduction to Data Science Chirag Shah, 2020-04-02 An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.
  data science for sales: Marketing Data Science Thomas W. Miller, 2015-05-02 Now, a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.
  data science for sales: Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions Matt Taddy, 2019-08-23 Use machine learning to understand your customers, frame decisions, and drive value The business analytics world has changed, and Data Scientists are taking over. Business Data Science takes you through the steps of using machine learning to implement best-in-class business data science. Whether you are a business leader with a desire to go deep on data, or an engineer who wants to learn how to apply Machine Learning to business problems, you’ll find the information, insight, and tools you need to flourish in today’s data-driven economy. You’ll learn how to: Use the key building blocks of Machine Learning: sparse regularization, out-of-sample validation, and latent factor and topic modeling Understand how use ML tools in real world business problems, where causation matters more that correlation Solve data science programs by scripting in the R programming language Today’s business landscape is driven by data and constantly shifting. Companies live and die on their ability to make and implement the right decisions quickly and effectively. Business Data Science is about doing data science right. It’s about the exciting things being done around Big Data to run a flourishing business. It’s about the precepts, principals, and best practices that you need know for best-in-class business data science.
  data science for sales: Common Data Sense for Professionals Rajesh Jugulum, 2022-01-27 Data is an intrinsic part of our daily lives. Everything we do is a data point. Many of these data points are recorded with the intent to help us lead more efficient lives. We have apps that track our workouts, sleep, food intake, and personal finance. We use the data to make changes to our lives based on goals we have set for ourselves. Businesses use vast collections of data to determine strategy and marketing. Data scientists take data, analyze it, and create models to help solve problems. You may have heard of companies having data management teams or chief information officers (CIOs) or chief data officers (CDOs), etc. They are all people who work with data, but their function is more related to vetting data and preparing it for use by data scientists. The jump from personal data usage for self-betterment to mass data analysis for business process improvement often feels bigger to us than it is. In turn, we often think big data analysis requires tools held only by advanced degree holders. Although advanced degrees are certainly valuable, this book illustrates how it is not a requirement to adequately run a data science project. Because we are all already data users, with some simple strategies and exposure to basic analytical software programs, anyone who has the proper tools and determination can solve data science problems. The process presented in this book will help empower individuals to work on and solve data-related challenges. The goal of this book is to provide a step-by-step guide to the data science process so that you can feel confident in leading your own data science project. To aid with clarity and understanding, the author presents a fictional restaurant chain to use as a case study, illustrating how the various topics discussed can be applied. Essentially, this book helps traditional businesspeople solve data-related problems on their own without any hesitation or fear. The powerful methods are presented in the form of conversations, examples, and case studies. The conversational style is engaging and provides clarity.
  data science for sales: Data Scientists at Work Sebastian Gutierrez, 2014-12-12 Data Scientists at Work is a collection of interviews with sixteen of the world's most influential and innovative data scientists from across the spectrum of this hot new profession. Data scientist is the sexiest job in the 21st century, according to the Harvard Business Review. By 2018, the United States will experience a shortage of 190,000 skilled data scientists, according to a McKinsey report. Through incisive in-depth interviews, this book mines the what, how, and why of the practice of data science from the stories, ideas, shop talk, and forecasts of its preeminent practitioners across diverse industries: social network (Yann LeCun, Facebook); professional network (Daniel Tunkelang, LinkedIn); venture capital (Roger Ehrenberg, IA Ventures); enterprise cloud computing and neuroscience (Eric Jonas, formerly Salesforce.com); newspaper and media (Chris Wiggins, The New York Times); streaming television (Caitlin Smallwood, Netflix); music forecast (Victor Hu, Next Big Sound); strategic intelligence (Amy Heineike, Quid); environmental big data (André Karpištšenko, Planet OS); geospatial marketing intelligence (Jonathan Lenaghan, PlaceIQ); advertising (Claudia Perlich, Dstillery); fashion e-commerce (Anna Smith, Rent the Runway); specialty retail (Erin Shellman, Nordstrom); email marketing (John Foreman, MailChimp); predictive sales intelligence (Kira Radinsky, SalesPredict); and humanitarian nonprofit (Jake Porway, DataKind). The book features a stimulating foreword by Google's Director of Research, Peter Norvig. Each of these data scientists shares how he or she tailors the torrent-taming techniques of big data, data visualization, search, and statistics to specific jobs by dint of ingenuity, imagination, patience, and passion. Data Scientists at Work parts the curtain on the interviewees’ earliest data projects, how they became data scientists, their discoveries and surprises in working with data, their thoughts on the past, present, and future of the profession, their experiences of team collaboration within their organizations, and the insights they have gained as they get their hands dirty refining mountains of raw data into objects of commercial, scientific, and educational value for their organizations and clients.
  data science for sales: The Science of Sales Leadership , Welcome to the forefront of knowledge with Cybellium, your trusted partner in mastering the cutting-edge fields of IT, Artificial Intelligence, Cyber Security, Business, Economics and Science. Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com
  data science for sales: Creating Value with Big Data Analytics Peter C. Verhoef, Edwin Kooge, Natasha Walk, 2016-01-08 Our newly digital world is generating an almost unimaginable amount of data about all of us. Such a vast amount of data is useless without plans and strategies that are designed to cope with its size and complexity, and which enable organisations to leverage the information to create value. This book is a refreshingly practical, yet theoretically sound roadmap to leveraging big data and analytics. Creating Value with Big Data Analytics provides a nuanced view of big data development, arguing that big data in itself is not a revolution but an evolution of the increasing availability of data that has been observed in recent times. Building on the authors’ extensive academic and practical knowledge, this book aims to provide managers and analysts with strategic directions and practical analytical solutions on how to create value from existing and new big data. By tying data and analytics to specific goals and processes for implementation, this is a much-needed book that will be essential reading for students and specialists of data analytics, marketing research, and customer relationship management.
  data science for sales: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results
  data science for sales: R for Marketing Research and Analytics Chris Chapman, Elea McDonnell Feit, 2015-03-25 This book is a complete introduction to the power of R for marketing research practitioners. The text describes statistical models from a conceptual point of view with a minimal amount of mathematics, presuming only an introductory knowledge of statistics. Hands-on chapters accelerate the learning curve by asking readers to interact with R from the beginning. Core topics include the R language, basic statistics, linear modeling, and data visualization, which is presented throughout as an integral part of analysis. Later chapters cover more advanced topics yet are intended to be approachable for all analysts. These sections examine logistic regression, customer segmentation, hierarchical linear modeling, market basket analysis, structural equation modeling, and conjoint analysis in R. The text uniquely presents Bayesian models with a minimally complex approach, demonstrating and explaining Bayesian methods alongside traditional analyses for analysis of variance, linear models, and metric and choice-based conjoint analysis. With its emphasis on data visualization, model assessment, and development of statistical intuition, this book provides guidance for any analyst looking to develop or improve skills in R for marketing applications.
  data science for sales: Data Science Tiffany Timbers, Trevor Campbell, Melissa Lee, 2022-07-15 Data Science: A First Introduction focuses on using the R programming language in Jupyter notebooks to perform data manipulation and cleaning, create effective visualizations, and extract insights from data using classification, regression, clustering, and inference. The text emphasizes workflows that are clear, reproducible, and shareable, and includes coverage of the basics of version control. All source code is available online, demonstrating the use of good reproducible project workflows. Based on educational research and active learning principles, the book uses a modern approach to R and includes accompanying autograded Jupyter worksheets for interactive, self-directed learning. The book will leave readers well-prepared for data science projects. The book is designed for learners from all disciplines with minimal prior knowledge of mathematics and programming. The authors have honed the material through years of experience teaching thousands of undergraduates in the University of British Columbia’s DSCI100: Introduction to Data Science course.
  data science for sales: Data Science for Business and Decision Making Luiz Paulo Favero, Patricia Belfiore, 2019-04-11 Data Science for Business and Decision Making covers both statistics and operations research while most competing textbooks focus on one or the other. As a result, the book more clearly defines the principles of business analytics for those who want to apply quantitative methods in their work. Its emphasis reflects the importance of regression, optimization and simulation for practitioners of business analytics. Each chapter uses a didactic format that is followed by exercises and answers. Freely-accessible datasets enable students and professionals to work with Excel, Stata Statistical Software®, and IBM SPSS Statistics Software®. - Combines statistics and operations research modeling to teach the principles of business analytics - Written for students who want to apply statistics, optimization and multivariate modeling to gain competitive advantages in business - Shows how powerful software packages, such as SPSS and Stata, can create graphical and numerical outputs
  data science for sales: How to Lead in Data Science Jike Chong, Yue Cathy Chang, 2021-12-28 A field guide for the unique challenges of data science leadership, filled with transformative insights, personal experiences, and industry examples. In How To Lead in Data Science you will learn: Best practices for leading projects while balancing complex trade-offs Specifying, prioritizing, and planning projects from vague requirements Navigating structural challenges in your organization Working through project failures with positivity and tenacity Growing your team with coaching, mentoring, and advising Crafting technology roadmaps and championing successful projects Driving diversity, inclusion, and belonging within teams Architecting a long-term business strategy and data roadmap as an executive Delivering a data-driven culture and structuring productive data science organizations How to Lead in Data Science is full of techniques for leading data science at every seniority level—from heading up a single project to overseeing a whole company's data strategy. Authors Jike Chong and Yue Cathy Chang share hard-won advice that they've developed building data teams for LinkedIn, Acorns, Yiren Digital, large asset-management firms, Fortune 50 companies, and more. You'll find advice on plotting your long-term career advancement, as well as quick wins you can put into practice right away. Carefully crafted assessments and interview scenarios encourage introspection, reveal personal blind spots, and highlight development areas. About the technology Lead your data science teams and projects to success! To make a consistent, meaningful impact as a data science leader, you must articulate technology roadmaps, plan effective project strategies, support diversity, and create a positive environment for professional growth. This book delivers the wisdom and practical skills you need to thrive as a data science leader at all levels, from team member to the C-suite. About the book How to Lead in Data Science shares unique leadership techniques from high-performance data teams. It’s filled with best practices for balancing project trade-offs and producing exceptional results, even when beginning with vague requirements or unclear expectations. You’ll find a clearly presented modern leadership framework based on current case studies, with insights reaching all the way to Aristotle and Confucius. As you read, you’ll build practical skills to grow and improve your team, your company’s data culture, and yourself. What's inside How to coach and mentor team members Navigate an organization’s structural challenges Secure commitments from other teams and partners Stay current with the technology landscape Advance your career About the reader For data science practitioners at all levels. About the author Dr. Jike Chong and Yue Cathy Chang build, lead, and grow high-performing data teams across industries in public and private companies, such as Acorns, LinkedIn, large asset-management firms, and Fortune 50 companies. Table of Contents 1 What makes a successful data scientist? PART 1 THE TECH LEAD: CULTIVATING LEADERSHIP 2 Capabilities for leading projects 3 Virtues for leading projects PART 2 THE MANAGER: NURTURING A TEAM 4 Capabilities for leading people 5 Virtues for leading people PART 3 THE DIRECTOR: GOVERNING A FUNCTION 6 Capabilities for leading a function 7 Virtues for leading a function PART 4 THE EXECUTIVE: INSPIRING AN INDUSTRY 8 Capabilities for leading a company 9 Virtues for leading a company PART 5 THE LOOP AND THE FUTURE 10 Landscape, organization, opportunity, and practice 11 Leading in data science and a future outlook
  data science for sales: The SaaS Sales Method Fernando Pizarro, Winning by Winning by Design, Dominique Levin, Dan Smith, Jacco Van Der Kooij, 2021-07-29 In a modern recurring revenue business it is impossible to scale without treating sales as a science. In this first book of the Sales Blueprints series, Jacco Van Der Kooij and Fernando Pizarro break down the science of sales into its basic elements. Unlike any book before it, The SaaS Sales Method exposes the math the underpins each stage in revenue production, from marketing, to sales, to customer success, and infers how revenue leaders should structure their processes, organizations, and training in each.By linking all three functions, The SaaS Sales Method provides a framework for the modern revenue leader to understand and improve their entire system, shifting from what the authors call a superstar culture to a science culture in the process.While subsequent books in the series go into depth on the specifics of each revenue function and the skills needed to succeed in each, The SaaS Sales Method is the glue that holds the entire approach together.
  data science for sales: Data Science Vijay Kotu, Bala Deshpande, 2018-11-27 Learn the basics of Data Science through an easy to understand conceptual framework and immediately practice using RapidMiner platform. Whether you are brand new to data science or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Science has become an essential tool to extract value from data for any organization that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, engineers, and analytics professionals and for anyone who works with data. You'll be able to: - Gain the necessary knowledge of different data science techniques to extract value from data. - Master the concepts and inner workings of 30 commonly used powerful data science algorithms. - Implement step-by-step data science process using using RapidMiner, an open source GUI based data science platform Data Science techniques covered: Exploratory data analysis, Visualization, Decision trees, Rule induction, k-nearest neighbors, Naïve Bayesian classifiers, Artificial neural networks, Deep learning, Support vector machines, Ensemble models, Random forests, Regression, Recommendation engines, Association analysis, K-Means and Density based clustering, Self organizing maps, Text mining, Time series forecasting, Anomaly detection, Feature selection and more... - Contains fully updated content on data science, including tactics on how to mine business data for information - Presents simple explanations for over twenty powerful data science techniques - Enables the practical use of data science algorithms without the need for programming - Demonstrates processes with practical use cases - Introduces each algorithm or technique and explains the workings of a data science algorithm in plain language - Describes the commonly used setup options for the open source tool RapidMiner
  data science for sales: Retail Analytics Emmett Cox, 2011-10-18 The inside scoop on boosting sales through spot-on analytics Retailers collect a huge amount of data, but don't know what to do with it. Retail Analytics not only provides a broad understanding of retail, but also shows how to put accumulated data to optimal use. Each chapter covers a different focus of the retail environment, from retail basics and organization structures to common retail database designs. Packed with case studies and examples, this book insightfully reveals how you can begin using your business data as a strategic advantage. Helps retailers and analysts to use analytics to sell more merchandise Provides fact-based analytic strategies that can be replicated with the same success the author achieved on a global level Reveals how retailers can begin using their data as a strategic advantage Includes examples from many retail departments illustrating successful use of data and analytics Analytics is the wave of the future. Put your data to strategic use with the proven guidance found in Retail Analytics.
  data science for sales: Data Driven Marketing For Dummies David Semmelroth, 2013-10-07 Embrace data and use it to sell and market your products Data is everywhere and it keeps growing and accumulating. Companies need to embrace big data and make it work harder to help them sell and market their products. Successful data analysis can help marketing professionals spot sales trends, develop smarter marketing campaigns, and accurately predict customer loyalty. Data Driven Marketing For Dummies helps companies use all the data at their disposal to make current customers more satisfied, reach new customers, and sell to their most important customer segments more efficiently. Identifying the common characteristics of customers who buy the same products from your company (or who might be likely to leave you) Tips on using data to predict customer purchasing behavior based on past performance Using customer data and marketing analytics to predict when customers will purchase certain items Information on how data collected can help with merchandise planning Breaking down customers into segments for easier market targeting Building a 360 degree view of a customer base Data Driven Marketing For Dummies assists marketing professionals at all levels of business in accelerating sales through analytical insights.
  data science for sales: Marketing Analytics Mike Grigsby, 2018-04-03 Who is most likely to buy and what is the best way to target them? How can businesses improve strategy without identifying the key influencing factors? The second edition of Marketing Analytics enables marketers and business analysts to leverage predictive techniques to measure and improve marketing performance. By exploring real-world marketing challenges, it provides clear, jargon-free explanations on how to apply different analytical models for each purpose. From targeted list creation and data segmentation, to testing campaign effectiveness, pricing structures and forecasting demand, this book offers a welcome handbook on how statistics, consumer analytics and modelling can be put to optimal use. The fully revised second edition of Marketing Analytics includes three new chapters on big data analytics, insights and panel regression, including how to collect, separate and analyze big data. All of the advanced tools and techniques for predictive analytics have been updated, translating models such as tobit analysis for customer lifetime value into everyday use. Whether an experienced practitioner or having no prior knowledge, methodologies are simplified to ensure the more complex aspects of data and analytics are fully accessible for any level of application. Complete with downloadable data sets and test bank resources, this book supplies a concrete foundation to optimize marketing analytics for day-to-day business advantage.
  data science for sales: Analytics of Life Mert Damlapinar, 2019-11-11 Analytics of Life provides the reader with a broad overview of the field of data analytics and artificial intelligence. It provides the layperson an understanding of the various stages of artificial intelligence, the risks and powerful benefits. And it provides a way to look at big data and machine learning that enables us to make the most of this exciting new realm of technology in our day-to-day jobs and our small businesses. Questions you can find answers* * What is artificial intelligence (AI)? * What is the difference between AI, machine learning and data analytics? * Which jobs AI will replace, which jobs are safe from data analytics revolution? * Why data analytics is the best career move? * How can I apply data analytics in my job or small business? Who is this book for? * Managers and business professionals * Marketers, product managers, and business strategists * Entrepreneurs, founders and startups team members * Consultants, advisors and educators * Almost anybody who has an interest in the future According to an article by Cade Metz in The New York Times, Researchers say computer systems are learning from lots and lots of digitized books and news articles that could bake old attitudes into new technology. Oxford University professor Nick Bostrom argues that if machine brains surpassed human brains in general intelligence, then this new superintelligence could become extremely powerful - possibly beyond our control. MIT professor Max Tegmark describes and illuminates the recent, ground-breaking advances in Artificial Intelligence and how it might overtake human intelligence. As Oxford University economist Daniel Susskind points out, technological progress could bring about unprecedented prosperity, solving one of humanity's oldest problems: how to make sure that everyone has enough to live on. Distinguished AI researcher and professor of computer science at UC Berkeley, Russell Stuart suggests that we can rebuild AI on a new foundation, according to which machines are designed to be inherently uncertain about the human preferences they are required to satisfy. Industry experts claim that AI will have a negative impact on blue-collar jobs, but Mert predicts that Americans and Europeans will experience a strong impact on white-collar jobs as well. And Mert also provides research results and a clear description of which jobs will be affected and how soon, which jobs could be enhanced with AI. Analytics of Life also provides solutions and insight into some of the most profound changes to come in human history.
  data science for sales: Data Science and Machine Learning Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman, 2019-11-20 Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
  data science for sales: HBR Guide to Data Analytics Basics for Managers (HBR Guide Series) Harvard Business Review, 2018-03-13 Don't let a fear of numbers hold you back. Today's business environment brings with it an onslaught of data. Now more than ever, managers must know how to tease insight from data--to understand where the numbers come from, make sense of them, and use them to inform tough decisions. How do you get started? Whether you're working with data experts or running your own tests, you'll find answers in the HBR Guide to Data Analytics Basics for Managers. This book describes three key steps in the data analysis process, so you can get the information you need, study the data, and communicate your findings to others. You'll learn how to: Identify the metrics you need to measure Run experiments and A/B tests Ask the right questions of your data experts Understand statistical terms and concepts Create effective charts and visualizations Avoid common mistakes
  data science for sales: Data Science Applied to Sustainability Analysis Jennifer Dunn, Prasanna Balaprakash, 2021-05-11 Data Science Applied to Sustainability Analysis focuses on the methodological considerations associated with applying this tool in analysis techniques such as lifecycle assessment and materials flow analysis. As sustainability analysts need examples of applications of big data techniques that are defensible and practical in sustainability analyses and that yield actionable results that can inform policy development, corporate supply chain management strategy, or non-governmental organization positions, this book helps answer underlying questions. In addition, it addresses the need of data science experts looking for routes to apply their skills and knowledge to domain areas. - Presents data sources that are available for application in sustainability analyses, such as market information, environmental monitoring data, social media data and satellite imagery - Includes considerations sustainability analysts must evaluate when applying big data - Features case studies illustrating the application of data science in sustainability analyses
  data science for sales: Storytelling with Data Cole Nussbaumer Knaflic, 2015-10-09 Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it!
  data science for sales: Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry Chkoniya, Valentina, 2021-06-25 The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students.
  data science for sales: Python for Marketing Research and Analytics Jason S. Schwarz, Chris Chapman, Elea McDonnell Feit, 2020-11-03 This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research. This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics.
  data science for sales: Data Science Strategy For Dummies Ulrika Jägare, 2019-06-12 All the answers to your data science questions Over half of all businesses are using data science to generate insights and value from big data. How are they doing it? Data Science Strategy For Dummies answers all your questions about how to build a data science capability from scratch, starting with the “what” and the “why” of data science and covering what it takes to lead and nurture a top-notch team of data scientists. With this book, you’ll learn how to incorporate data science as a strategic function into any business, large or small. Find solutions to your real-life challenges as you uncover the stories and value hidden within data. Learn exactly what data science is and why it’s important Adopt a data-driven mindset as the foundation to success Understand the processes and common roadblocks behind data science Keep your data science program focused on generating business value Nurture a top-quality data science team In non-technical language, Data Science Strategy For Dummies outlines new perspectives and strategies to effectively lead analytics and data science functions to create real value.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be …