Data Science Interview Prep Book

Advertisement



  data science interview prep book: Ace the Data Science Interview Kevin Huo, Nick Singh, 2021
  data science interview prep book: Cracking the Data Science Interview Maverick Lin, 2019-12-17 Cracking the Data Science Interview is the first book that attempts to capture the essence of data science in a concise, compact, and clean manner. In a Cracking the Coding Interview style, Cracking the Data Science Interview first introduces the relevant concepts, then presents a series of interview questions to help you solidify your understanding and prepare you for your next interview. Topics include: - Necessary Prerequisites (statistics, probability, linear algebra, and computer science) - 18 Big Ideas in Data Science (such as Occam's Razor, Overfitting, Bias/Variance Tradeoff, Cloud Computing, and Curse of Dimensionality) - Data Wrangling (exploratory data analysis, feature engineering, data cleaning and visualization) - Machine Learning Models (such as k-NN, random forests, boosting, neural networks, k-means clustering, PCA, and more) - Reinforcement Learning (Q-Learning and Deep Q-Learning) - Non-Machine Learning Tools (graph theory, ARIMA, linear programming) - Case Studies (a look at what data science means at companies like Amazon and Uber) Maverick holds a bachelor's degree from the College of Engineering at Cornell University in operations research and information engineering (ORIE) and a minor in computer science. He is the author of the popular Data Science Cheatsheet and Data Engineering Cheatsheet on GCP and has previous experience in data science consulting for a Fortune 500 company focusing on fraud analytics.
  data science interview prep book: 500 Data Science Interview Questions and Answers Vamsee Puligadda, Get that job, you aspire for! Want to switch to that high paying job? Or are you already been preparing hard to give interview the next weekend? Do you know how many people get rejected in interviews by preparing only concepts but not focusing on actually which questions will be asked in the interview? Don't be that person this time. This is the most comprehensive Data Science interview questions book that you can ever find out. It contains: 500 most frequently asked and important Data Science interview questions and answers Wide range of questions which cover not only basics in Data Science but also most advanced and complex questions which will help freshers, experienced professionals, senior developers, testers to crack their interviews.
  data science interview prep book: Heard in Data Science Interviews Kal Mishra, 2018-10-03 A collection of over 650 actual Data Scientist/Machine Learning Engineer job interview questions along with their full answers, references, and useful tips
  data science interview prep book: Data Science Interviews Exposed Jane You, Yanping Huang, Iris Wang, Feng Cao (Computer scientist), Ian Gao, 2015 The era has come when data science is changing the world and everyone's life. Data Science Interviews Exposed is the first book in the industry that covers everything you need to know to prepare for a data science career: from job market overview to job roles description, from resume preparation to soft skill development, and most importantly, the real interview questions and detailed answers. We hope this book can help the candidates in the data science job market, as well as those who need guidance to begin a data science career.--Back cover.
  data science interview prep book: Cracking The Machine Learning Interview Nitin Suri, 2018-12-18 A breakthrough in machine learning would be worth ten Microsofts. -Bill Gates Despite being one of the hottest disciplines in the Tech industry right now, Artificial Intelligence and Machine Learning remain a little elusive to most.The erratic availability of resources online makes it extremely challenging for us to delve deeper into these fields. Especially when gearing up for job interviews, most of us are at a loss due to the unavailability of a complete and uncondensed source of learning. Cracking the Machine Learning Interview Equips you with 225 of the best Machine Learning problems along with their solutions. Requires only a basic knowledge of fundamental mathematical and statistical concepts. Assists in learning the intricacies underlying Machine Learning concepts and algorithms suited to specific problems. Uniquely provides a manifold understanding of both statistical foundations and applied programming models for solving problems. Discusses key points and concrete tips for approaching real life system design problems and imparts the ability to apply them to your day to day work. This book covers all the major topics within Machine Learning which are frequently asked in the Interviews. These include: Supervised and Unsupervised Learning Classification and Regression Decision Trees Ensembles K-Nearest Neighbors Logistic Regression Support Vector Machines Neural Networks Regularization Clustering Dimensionality Reduction Feature Extraction Feature Engineering Model Evaluation Natural Language Processing Real life system design problems Mathematics and Statistics behind the Machine Learning Algorithms Various distributions and statistical tests This book can be used by students and professionals alike. It has been drafted in a way to benefit both, novices as well as individuals with substantial experience in Machine Learning. Following Cracking The Machine Learning Interview diligently would equip you to face any Machine Learning Interview.
  data science interview prep book: RocketPrep Ace Your Data Science Interview 300 Practice Questions and Answers: Machine Learning, Statistics, Databases and More Zack Austin, 2017-12-09 Here's what you get in this book: - 300 practice questions and answers spanning the breadth of topics under the data science umbrella - Covers statistics, machine learning, SQL, NoSQL, Hadoop and bioinformatics - Emphasis on real-world application with a chapter on Python libraries for machine learning - Focus on the most frequently asked interview questions. Avoid information overload - Compact format: easy to read, easy to carry, so you can study on-the-go Now, you finally have what you need to crush your data science interview, and land that dream job. About The Author Zack Austin has been building large scale enterprise systems for clients in the media, telecom, financial services and publishing since 2001. He is based in New York City.
  data science interview prep book: Be the Outlier Shrilata Murthy, 2020-07-27 According to LinkedIn's third annual U.S. Emerging Jobs Report, the data scientist role is ranked third among the top-15 emerging jobs in the U.S. Though the field of data science has been exploding, there didn't appear to be a comprehensive resource to help data scientists navigate the interview process... until now. In Be the Outlier: How to Ace Data Science Interviews, data scientist Shrilata Murthy covers all aspects of a data science interview in today's industry. Murthy combines her own experience in the job market with expert insight from data scientists with Google, Facebook, Amazon, NASA, Aetna, MBB & Big 4 consulting firms, and many more. In this book, you'll learn... the foundational knowledge that is key to any data science interview the 100-Word Story framework for writing a stellar resume what to expect from a variety of interview styles (take-home, presentation, case study, etc.), and actionable ways to differentiate yourself from your peers. By using real-world examples, practice questions, and sample interviews, Murthy has created an easy-to-follow guide that will help you crack any data science interview. After reading Be the Outlier, get ready to land your dream job in data science.
  data science interview prep book: Practical Statistics for Data Scientists Peter Bruce, Andrew Bruce, 2017-05-10 Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data
  data science interview prep book: Build a Career in Data Science Emily Robinson, Jacqueline Nolis, 2020-03-24 Summary You are going to need more than technical knowledge to succeed as a data scientist. Build a Career in Data Science teaches you what school leaves out, from how to land your first job to the lifecycle of a data science project, and even how to become a manager. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology What are the keys to a data scientist’s long-term success? Blending your technical know-how with the right “soft skills” turns out to be a central ingredient of a rewarding career. About the book Build a Career in Data Science is your guide to landing your first data science job and developing into a valued senior employee. By following clear and simple instructions, you’ll learn to craft an amazing resume and ace your interviews. In this demanding, rapidly changing field, it can be challenging to keep projects on track, adapt to company needs, and manage tricky stakeholders. You’ll love the insights on how to handle expectations, deal with failures, and plan your career path in the stories from seasoned data scientists included in the book. What's inside Creating a portfolio of data science projects Assessing and negotiating an offer Leaving gracefully and moving up the ladder Interviews with professional data scientists About the reader For readers who want to begin or advance a data science career. About the author Emily Robinson is a data scientist at Warby Parker. Jacqueline Nolis is a data science consultant and mentor. Table of Contents: PART 1 - GETTING STARTED WITH DATA SCIENCE 1. What is data science? 2. Data science companies 3. Getting the skills 4. Building a portfolio PART 2 - FINDING YOUR DATA SCIENCE JOB 5. The search: Identifying the right job for you 6. The application: Résumés and cover letters 7. The interview: What to expect and how to handle it 8. The offer: Knowing what to accept PART 3 - SETTLING INTO DATA SCIENCE 9. The first months on the job 10. Making an effective analysis 11. Deploying a model into production 12. Working with stakeholders PART 4 - GROWING IN YOUR DATA SCIENCE ROLE 13. When your data science project fails 14. Joining the data science community 15. Leaving your job gracefully 16. Moving up the ladder
  data science interview prep book: Deep Learning Interviews Shlomo Kashani, 2020-12-09 The book's contents is a large inventory of numerous topics relevant to DL job interviews and graduate level exams. That places this work at the forefront of the growing trend in science to teach a core set of practical mathematical and computational skills. It is widely accepted that the training of every computer scientist must include the fundamental theorems of ML, and AI appears in the curriculum of nearly every university. This volume is designed as an excellent reference for graduates of such programs.
  data science interview prep book: Machine Learning for Hackers Drew Conway, John Myles White, 2012-02-13 If you’re an experienced programmer interested in crunching data, this book will get you started with machine learning—a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you’ll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research. Develop a naïve Bayesian classifier to determine if an email is spam, based only on its text Use linear regression to predict the number of page views for the top 1,000 websites Learn optimization techniques by attempting to break a simple letter cipher Compare and contrast U.S. Senators statistically, based on their voting records Build a “whom to follow” recommendation system from Twitter data
  data science interview prep book: A Collection of Data Science Interview Questions Solved in Python and Spark Antonio Gulli, 2015-09-22 BigData and Machine Learning in Python and Spark
  data science interview prep book: Doing Data Science Cathy O'Neil, Rachel Schutt, 2013-10-09 Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
  data science interview prep book: Data Science from Scratch Joel Grus, 2015-04-14 Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
  data science interview prep book: Data Science For Dummies Lillian Pierson, 2021-08-20 Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today.
  data science interview prep book: The Data Science Design Manual Steven S. Skiena, 2017-07-01 This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com)
  data science interview prep book: A Collection of Advanced Data Science and Machine Learning Interview Questions Solved in Python and Spark (Ii) Antonio Gulli, 2015-11-18 A collection of Machine Learning interview questions in Python and Spark
  data science interview prep book: Journey to Data Scientist Kate Strachnyi, 2017-11-13 When author Kate Strachnyi wanted to learn more about data science, she went straight to the source. In a series of more than twenty interviews, she asks leading data scientists questions about starting in the field and the future of the industry. With their stories, learn about the many different positions available for data scientists, the criteria recruiters look for when hiring, the best options for building your portfolio, the recruitment and interviewing process, the typical workday for a data scientist, the changing industry and its impact on other industries, the wide variety of projects that use data science, and the skills that can complement and improve your work. Strachnyi's interview subjects include team members from some of the world's largest organizations, including LinkedIn, Pinterest, Bloomberg, and IBM. These men and women graciously explain how they fell in love with data science and list the must-have skills that would make you an invaluable member of a team. Their advice gives you invaluable insight into the world of data science and the best ways you yourself can contribute to amazing research projects and the development of new technology.
  data science interview prep book: Elements of Programming Interviews Adnan Aziz, Tsung-Hsien Lee, Amit Prakash, 2012 The core of EPI is a collection of over 300 problems with detailed solutions, including 100 figures, 250 tested programs, and 150 variants. The problems are representative of questions asked at the leading software companies. The book begins with a summary of the nontechnical aspects of interviewing, such as common mistakes, strategies for a great interview, perspectives from the other side of the table, tips on negotiating the best offer, and a guide to the best ways to use EPI. The technical core of EPI is a sequence of chapters on basic and advanced data structures, searching, sorting, broad algorithmic principles, concurrency, and system design. Each chapter consists of a brief review, followed by a broad and thought-provoking series of problems. We include a summary of data structure, algorithm, and problem solving patterns.
  data science interview prep book: Data Science with Machine Learning Narayanan Vishwanathan, 2019-09-20 Starts with statistics then goes towards Core Python followed by numpy to pandas to scipy and sklearnKey features Easy to learn, step by step explanation of examples. Questions related to core/basic Python, Excel, basic and advanced statistics are included. Covers numpy, scipy, sklearn and pandas to a greater detail with good number of examples Description The book e;Data science with Machine learning- Python interview questionse; is a true companion of people aspiring for data science and machine learning and provides answers to mostly asked questions in a easy to remember and presentable form.Data science is one of the hottest topics mainly because of the application areas it is involved and things which were once upon of time, impossible with earlier software has been made easy. This book is mainly intended to be used as last-minute revision, before interview, as all the important concepts have been given in simple and understand format. Many examples have been provided so that same can be used while giving answers in interview.This book tries to include various terminologies and logic used both as a part of Data Science and Machine learning for last minute revision. As such you can say that this book acts as a companion whenever you want to go for interview.Simple to use words have been used in the answers for the questions to help ease of remembering and representation of same. Examples where ever deemed necessary have been provided so that same can be used while giving answers in interview. Author tried to consolidate whatever he came across, on multiple interviews that he attended and put the same in words so that it becomes easy for the reader of the book to give direction on how the interview would be.With the number of data science jobs increasing, Author is sure that everyone who wants to pursue this field would like to keep this book as a constant companion. What will you learn You can learn the basic concept and terms related to Data Science You will get to learn how to program in python You can learn the basic questions of python programming By reading this book you can get to know the basics of Numpy You will get familiarity with the questions asked in interview related to Pandas. You will learn the concepts of Scipy, Matplotib, and Statistics with Excel Sheet Who this book is forThe book is intended for anyone wish to learn Python Data Science, Numpy, Pandas, Scipy, Matplotib and Statistics with Excel Sheet. This book content also covers the basic questions which are asked during an interview. This book is mainly intended to help people represent their answer in a sensible way to the interviewer. The answers have been carefully rendered in a way to make things quite simple and yet represent the seriousness and complexity of matter. Since data science is incomplete without mathematics we have also included a part of the book dedicated to statistics. Table of contents1. Data Science Basic Questions and Terms2. Python Programming Questions3. Numpy Interview Questions4. Pandas Interview Questions5. Scipy and its Applications6. Matplotlib Samples to Remember7. Statistics with Excel Sheet About the authorMr Vishwanathan has twenty years of hard code experience in software industry spanning across many multinational companies and domains. Playing with data to derive meaningful insights has been his domain and that is what took him towards data science and machine learning.
  data science interview prep book: The Data Science Handbook Carl Shan, Henry Wang, William Chen, Max Song, 2015-05-03 The Data Science Handbook is a curated collection of 25 candid, honest and insightful interviews conducted with some of the world's top data scientists.In this book, you'll hear how the co-creator of the term 'data scientist' thinks about career and personal success. You'll hear from a young woman who created her own data scientist curriculum, subsequently landing her a role in the field. Readers of this book will be left with war stories, wisdom and
  data science interview prep book: The Art of Statistics David Spiegelhalter, 2019-09-03 In this important and comprehensive guide to statistical thinking (New Yorker), discover how data literacy is changing the world and gives you a better understanding of life’s biggest problems. Statistics are everywhere, as integral to science as they are to business, and in the popular media hundreds of times a day. In this age of big data, a basic grasp of statistical literacy is more important than ever if we want to separate the fact from the fiction, the ostentatious embellishments from the raw evidence -- and even more so if we hope to participate in the future, rather than being simple bystanders. In The Art of Statistics, world-renowned statistician David Spiegelhalter shows readers how to derive knowledge from raw data by focusing on the concepts and connections behind the math. Drawing on real world examples to introduce complex issues, he shows us how statistics can help us determine the luckiest passenger on the Titanic, whether a notorious serial killer could have been caught earlier, and if screening for ovarian cancer is beneficial. The Art of Statistics not only shows us how mathematicians have used statistical science to solve these problems -- it teaches us how we too can think like statisticians. We learn how to clarify our questions, assumptions, and expectations when approaching a problem, and -- perhaps even more importantly -- we learn how to responsibly interpret the answers we receive. Combining the incomparable insight of an expert with the playful enthusiasm of an aficionado, The Art of Statistics is the definitive guide to stats that every modern person needs.
  data science interview prep book: Dataclysm Christian Rudder, 2014-09-09 A New York Times Bestseller An audacious, irreverent investigation of human behavior—and a first look at a revolution in the making Our personal data has been used to spy on us, hire and fire us, and sell us stuff we don’t need. In Dataclysm, Christian Rudder uses it to show us who we truly are. For centuries, we’ve relied on polling or small-scale lab experiments to study human behavior. Today, a new approach is possible. As we live more of our lives online, researchers can finally observe us directly, in vast numbers, and without filters. Data scientists have become the new demographers. In this daring and original book, Rudder explains how Facebook likes can predict, with surprising accuracy, a person’s sexual orientation and even intelligence; how attractive women receive exponentially more interview requests; and why you must have haters to be hot. He charts the rise and fall of America’s most reviled word through Google Search and examines the new dynamics of collaborative rage on Twitter. He shows how people express themselves, both privately and publicly. What is the least Asian thing you can say? Do people bathe more in Vermont or New Jersey? What do black women think about Simon & Garfunkel? (Hint: they don’t think about Simon & Garfunkel.) Rudder also traces human migration over time, showing how groups of people move from certain small towns to the same big cities across the globe. And he grapples with the challenge of maintaining privacy in a world where these explorations are possible. Visually arresting and full of wit and insight, Dataclysm is a new way of seeing ourselves—a brilliant alchemy, in which math is made human and numbers become the narrative of our time.
  data science interview prep book: Cracking the Coding Interview Gayle Laakmann McDowell, 2011 Now in the 5th edition, Cracking the Coding Interview gives you the interview preparation you need to get the top software developer jobs. This book provides: 150 Programming Interview Questions and Solutions: From binary trees to binary search, this list of 150 questions includes the most common and most useful questions in data structures, algorithms, and knowledge based questions. 5 Algorithm Approaches: Stop being blind-sided by tough algorithm questions, and learn these five approaches to tackle the trickiest problems. Behind the Scenes of the interview processes at Google, Amazon, Microsoft, Facebook, Yahoo, and Apple: Learn what really goes on during your interview day and how decisions get made. Ten Mistakes Candidates Make -- And How to Avoid Them: Don't lose your dream job by making these common mistakes. Learn what many candidates do wrong, and how to avoid these issues. Steps to Prepare for Behavioral and Technical Questions: Stop meandering through an endless set of questions, while missing some of the most important preparation techniques. Follow these steps to more thoroughly prepare in less time.
  data science interview prep book: Deep Learning and the Game of Go Kevin Ferguson, Max Pumperla, 2019-01-06 Summary Deep Learning and the Game of Go teaches you how to apply the power of deep learning to complex reasoning tasks by building a Go-playing AI. After exposing you to the foundations of machine and deep learning, you'll use Python to build a bot and then teach it the rules of the game. Foreword by Thore Graepel, DeepMind Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The ancient strategy game of Go is an incredible case study for AI. In 2016, a deep learning-based system shocked the Go world by defeating a world champion. Shortly after that, the upgraded AlphaGo Zero crushed the original bot by using deep reinforcement learning to master the game. Now, you can learn those same deep learning techniques by building your own Go bot! About the Book Deep Learning and the Game of Go introduces deep learning by teaching you to build a Go-winning bot. As you progress, you'll apply increasingly complex training techniques and strategies using the Python deep learning library Keras. You'll enjoy watching your bot master the game of Go, and along the way, you'll discover how to apply your new deep learning skills to a wide range of other scenarios! What's inside Build and teach a self-improving game AI Enhance classical game AI systems with deep learning Implement neural networks for deep learning About the Reader All you need are basic Python skills and high school-level math. No deep learning experience required. About the Author Max Pumperla and Kevin Ferguson are experienced deep learning specialists skilled in distributed systems and data science. Together, Max and Kevin built the open source bot BetaGo. Table of Contents PART 1 - FOUNDATIONS Toward deep learning: a machine-learning introduction Go as a machine-learning problem Implementing your first Go bot PART 2 - MACHINE LEARNING AND GAME AI Playing games with tree search Getting started with neural networks Designing a neural network for Go data Learning from data: a deep-learning bot Deploying bots in the wild Learning by practice: reinforcement learning Reinforcement learning with policy gradients Reinforcement learning with value methods Reinforcement learning with actor-critic methods PART 3 - GREATER THAN THE SUM OF ITS PARTS AlphaGo: Bringing it all together AlphaGo Zero: Integrating tree search with reinforcement learning
  data science interview prep book: Coding Interviews Harry He, 2013-01-31 This book is about coding interview questions from software and Internet companies. It covers five key factors which determine performance of candidates: (1) the basics of programming languages, data structures and algorithms, (2) approaches to writing code with high quality, (3) tips to solve difficult problems, (4) methods to optimize code, (5) soft skills required in interviews. The basics of languages, algorithms and data structures are discussed as well as questions that explore how to write robust solutions after breaking down problems into manageable pieces. It also includes examples to focus on modeling and creative problem solving. Interview questions from the most popular companies in the IT industry are taken as examples to illustrate the five factors above. Besides solutions, it contains detailed analysis, how interviewers evaluate solutions, as well as why they like or dislike them. The author makes clever use of the fact that interviewees will have limited time to program meaningful solutions which in turn, limits the options an interviewer has. So the author covers those bases. Readers will improve their interview performance after reading this book. It will be beneficial for them even after they get offers, because its topics, such as approaches to analyzing difficult problems, writing robust code and optimizing, are all essential for high-performing coders.
  data science interview prep book: Data Science and Machine Learning Dirk P. Kroese, Zdravko Botev, Thomas Taimre, Radislav Vaisman, 2019-11-20 Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
  data science interview prep book: Data Feminism Catherine D'Ignazio, Lauren F. Klein, 2020-03-31 A new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Today, data science is a form of power. It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought. Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.” Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.
  data science interview prep book: Malware Data Science Joshua Saxe, Hillary Sanders, 2018-09-25 Malware Data Science explains how to identify, analyze, and classify large-scale malware using machine learning and data visualization. Security has become a big data problem. The growth rate of malware has accelerated to tens of millions of new files per year while our networks generate an ever-larger flood of security-relevant data each day. In order to defend against these advanced attacks, you'll need to know how to think like a data scientist. In Malware Data Science, security data scientist Joshua Saxe introduces machine learning, statistics, social network analysis, and data visualization, and shows you how to apply these methods to malware detection and analysis. You'll learn how to: - Analyze malware using static analysis - Observe malware behavior using dynamic analysis - Identify adversary groups through shared code analysis - Catch 0-day vulnerabilities by building your own machine learning detector - Measure malware detector accuracy - Identify malware campaigns, trends, and relationships through data visualization Whether you're a malware analyst looking to add skills to your existing arsenal, or a data scientist interested in attack detection and threat intelligence, Malware Data Science will help you stay ahead of the curve.
  data science interview prep book: Who Geoff Smart, Randy Street, 2008-09-30 In this instant New York Times Bestseller, Geoff Smart and Randy Street provide a simple, practical, and effective solution to what The Economist calls “the single biggest problem in business today”: unsuccessful hiring. The average hiring mistake costs a company $1.5 million or more a year and countless wasted hours. This statistic becomes even more startling when you consider that the typical hiring success rate of managers is only 50 percent. The silver lining is that “who” problems are easily preventable. Based on more than 1,300 hours of interviews with more than 20 billionaires and 300 CEOs, Who presents Smart and Street’s A Method for Hiring. Refined through the largest research study of its kind ever undertaken, the A Method stresses fundamental elements that anyone can implement–and it has a 90 percent success rate. Whether you’re a member of a board of directors looking for a new CEO, the owner of a small business searching for the right people to make your company grow, or a parent in need of a new babysitter, it’s all about Who. Inside you’ll learn how to • avoid common “voodoo hiring” methods • define the outcomes you seek • generate a flow of A Players to your team–by implementing the #1 tactic used by successful businesspeople • ask the right interview questions to dramatically improve your ability to quickly distinguish an A Player from a B or C candidate • attract the person you want to hire, by emphasizing the points the candidate cares about most In business, you are who you hire. In Who, Geoff Smart and Randy Street offer simple, easy-to-follow steps that will put the right people in place for optimal success.
  data science interview prep book: Python Interviews Michael Driscoll, 2018-02-28 Mike Driscoll takes you on a journey talking to a hall-of-fame list of truly remarkable Python experts. You’ll be inspired every time by their passion for the Python language, as they share with you their experiences, contributions, and careers in Python. Key Features Hear from these key Python thinkers about the current status of Python, and where it's heading in the future Listen to their close thoughts on significant Python topics, such as Python's role in scientific computing, and machine learning Understand the direction of Python, and what needs to change for Python 4 Book Description Each of these twenty Python Interviews can inspire and refresh your relationship with Python and the people who make Python what it is today. Let these interviews spark your own creativity, and discover how you also have the ability to make your mark on a thriving tech community. This book invites you to immerse in the Python landscape, and let these remarkable programmers show you how you too can connect and share with Python programmers around the world. Learn from their opinions, enjoy their stories, and use their tech tips. • Brett Cannon - former director of the PSF, Python core developer, led the migration to Python 3. • Steve Holden - tireless Python promoter and former chairman and director of the PSF. • Carol Willing - former director of the PSF and Python core developer, Project Jupyter Steering Council member. • Nick Coghlan - founding member of the PSF's Packaging Working Group and Python core developer. • Jessica McKellar - former director of the PSF and Python activist. • Marc-André Lemburg - Python core developer and founding member of the PSF. • Glyph Lefkowitz - founder of Twisted and fellow of the PSF • Doug Hellmann - fellow of the PSF, creator of the Python Module of the Week blog, Python community member since 1998. • Massimo Di Pierro - fellow of the PSF, data scientist and the inventor of web2py. • Alex Martelli - fellow of the PSF and co-author of Python in a Nutshell. • Barry Warsaw - fellow of the PSF, Python core developer since 1995, and original member of PythonLabs. • Tarek Ziadé - founder of Afpy and author of Expert Python Programming. • Sebastian Raschka - data scientist and author of Python Machine Learning. • Wesley Chun - fellow of the PSF and author of the Core Python Programming books. • Steven Lott - Python blogger and author of Python for Secret Agents. • Oliver Schoenborn - author of Pypubsub and wxPython mailing list contributor. • Al Sweigart - bestselling author of Automate the Boring Stuff with Python and creator of the Python modules Pyperclip and PyAutoGUI. • Luciano Ramalho - fellow of the PSF and the author of Fluent Python. • Mike Bayer - fellow of the PSF, creator of open source libraries including SQLAlchemy. • Jake Vanderplas - data scientist and author of Python Data Science Handbook. What you will learn How successful programmers think The history of Python Insights into the minds of the Python core team Trends in Python programming Who this book is for Python programmers and students interested in the way that Python is used – past and present – with useful anecdotes. It will also be of interest to those looking to gain insights from top programmers.
  data science interview prep book: A Practical Introduction to In-depth Interviewing Alan Morris, 2015-05-18 Are you new to qualitative research or a bit rusty and in need of some inspiration? Are you doing a research project involving in-depth interviews? Are you nervous about carrying out your interviews? This book will help you complete your qualitative research project by providing a nuts and bolts introduction to interviewing. With coverage of ethics, preparation strategies and advice for handling the unexpected in the field, this handy guide will help you get to grips with the basics of interviewing before embarking on your research. While recognising that your research question and the context of your research will drive your approach to interviewing, this book provides practical advice often skipped in traditional methods textbooks. Written with the needs of social science students and those new to qualitative research in mind, the book will help you plan, prepare for, carry out and analyse your interviews.
  data science interview prep book: Analyzing and Interpreting Qualitative Research Charles Vanover, Paul Mihas, Johnny Saldana, 2021-04-08 Drawing on the expertise of major names in the field, this text provides comprehensive coverage of the key methods for analyzing, interpreting, and writing up qualitative research in a single volume.
  data science interview prep book: How to Lead in Data Science Jike Chong, Yue Cathy Chang, 2021-12-28 A field guide for the unique challenges of data science leadership, filled with transformative insights, personal experiences, and industry examples. In How To Lead in Data Science you will learn: Best practices for leading projects while balancing complex trade-offs Specifying, prioritizing, and planning projects from vague requirements Navigating structural challenges in your organization Working through project failures with positivity and tenacity Growing your team with coaching, mentoring, and advising Crafting technology roadmaps and championing successful projects Driving diversity, inclusion, and belonging within teams Architecting a long-term business strategy and data roadmap as an executive Delivering a data-driven culture and structuring productive data science organizations How to Lead in Data Science is full of techniques for leading data science at every seniority level—from heading up a single project to overseeing a whole company's data strategy. Authors Jike Chong and Yue Cathy Chang share hard-won advice that they've developed building data teams for LinkedIn, Acorns, Yiren Digital, large asset-management firms, Fortune 50 companies, and more. You'll find advice on plotting your long-term career advancement, as well as quick wins you can put into practice right away. Carefully crafted assessments and interview scenarios encourage introspection, reveal personal blind spots, and highlight development areas. About the technology Lead your data science teams and projects to success! To make a consistent, meaningful impact as a data science leader, you must articulate technology roadmaps, plan effective project strategies, support diversity, and create a positive environment for professional growth. This book delivers the wisdom and practical skills you need to thrive as a data science leader at all levels, from team member to the C-suite. About the book How to Lead in Data Science shares unique leadership techniques from high-performance data teams. It’s filled with best practices for balancing project trade-offs and producing exceptional results, even when beginning with vague requirements or unclear expectations. You’ll find a clearly presented modern leadership framework based on current case studies, with insights reaching all the way to Aristotle and Confucius. As you read, you’ll build practical skills to grow and improve your team, your company’s data culture, and yourself. What's inside How to coach and mentor team members Navigate an organization’s structural challenges Secure commitments from other teams and partners Stay current with the technology landscape Advance your career About the reader For data science practitioners at all levels. About the author Dr. Jike Chong and Yue Cathy Chang build, lead, and grow high-performing data teams across industries in public and private companies, such as Acorns, LinkedIn, large asset-management firms, and Fortune 50 companies. Table of Contents 1 What makes a successful data scientist? PART 1 THE TECH LEAD: CULTIVATING LEADERSHIP 2 Capabilities for leading projects 3 Virtues for leading projects PART 2 THE MANAGER: NURTURING A TEAM 4 Capabilities for leading people 5 Virtues for leading people PART 3 THE DIRECTOR: GOVERNING A FUNCTION 6 Capabilities for leading a function 7 Virtues for leading a function PART 4 THE EXECUTIVE: INSPIRING AN INDUSTRY 8 Capabilities for leading a company 9 Virtues for leading a company PART 5 THE LOOP AND THE FUTURE 10 Landscape, organization, opportunity, and practice 11 Leading in data science and a future outlook
  data science interview prep book: Technologies of Speculation Sun-ha Hong, 2020-07-28 An inquiry into what we can know in an age of surveillance and algorithms Knitting together contemporary technologies of datafication to reveal a broader, underlying shift in what counts as knowledge, Technologies of Speculation reframes today’s major moral and political controversies around algorithms and artificial intelligence. How many times we toss and turn in our sleep, our voluminous social media activity and location data, our average resting heart rate and body temperature: new technologies of state and self-surveillance promise to re-enlighten the black boxes of our bodies and minds. But Sun-ha Hong suggests that the burden to know and to digest this information at alarming rates is stripping away the liberal subject that ‘knows for themselves’, and risks undermining the pursuit of a rational public. What we choose to track, and what kind of data is extracted from us, shapes a society in which my own experience and sensation is increasingly overruled by data-driven systems. From the rapidly growing Quantified Self community to large-scale dragnet data collection in the name of counter-terrorism and drone warfare, Hong argues that data’s promise of objective truth results in new cultures of speculation. In his analysis of the Snowden affair, Hong demonstrates an entirely new way of thinking through what we could know, and the political and philosophical stakes of the belief that data equates to knowledge. When we simply cannot process all the data at our fingertips, he argues, we look past the inconvenient and the complicated to favor the comprehensible. In the process, racial stereotypes and other longstanding prejudices re-enter our newest technologies by the back door. Hong reveals the moral and philosophical equations embedded into the algorithmic eye that now follows us all.
  data science interview prep book: Quant Job Interview Questions and Answers Mark Joshi, Nick Denson, Nicholas Denson, Andrew Downes, 2013 The quant job market has never been tougher. Extensive preparation is essential. Expanding on the successful first edition, this second edition has been updated to reflect the latest questions asked. It now provides over 300 interview questions taken from actual interviews in the City and Wall Street. Each question comes with a full detailed solution, discussion of what the interviewer is seeking and possible follow-up questions. Topics covered include option pricing, probability, mathematics, numerical algorithms and C++, as well as a discussion of the interview process and the non-technical interview. All three authors have worked as quants and they have done many interviews from both sides of the desk. Mark Joshi has written many papers and books including the very successful introductory textbook, The Concepts and Practice of Mathematical Finance.
  data science interview prep book: Decode and Conquer Lewis C. Lin, 2013-11-28 Land that Dream Product Manager Job...TODAYSeeking a product management position?Get Decode and Conquer, the world's first book on preparing you for the product management (PM) interview. Author and professional interview coach, Lewis C. Lin provides you with an industry insider's perspective on how to conquer the most difficult PM interview questions. Decode and Conquer reveals: Frameworks for tackling product design and metrics questions, including the CIRCLES Method(tm), AARM Method(tm), and DIGS Method(tm) Biggest mistakes PM candidates make at the interview and how to avoid them Insider tips on just what interviewers are looking for and how to answer so they can't say NO to hiring you Sample answers for the most important PM interview questions Questions and answers covered in the book include: Design a new iPad app for Google Spreadsheet. Brainstorm as many algorithms as possible for recommending Twitter followers. You're the CEO of the Yellow Cab taxi service. How do you respond to Uber? You're part of the Google Search web spam team. How would you detect duplicate websites? The billboard industry is under monetized. How can Google create a new product or offering to address this? Get the Book that's Recommended by Executives from Google, Amazon, Microsoft, Oracle & VMWare...TODAY
  data science interview prep book: Programming Interviews Exposed John Mongan, Noah Suojanen Kindler, Eric Giguère, 2018-04-17 Ace technical interviews with smart preparation Programming Interviews Exposed is the programmer’s ideal first choice for technical interview preparation. Updated to reflect changing techniques and trends, this new fourth edition provides insider guidance on the unique interview process that today's programmers face. Online coding contests are being used to screen candidate pools of thousands, take-home projects have become commonplace, and employers are even evaluating a candidate's public code repositories at GitHub—and with competition becoming increasingly fierce, programmers need to shape themselves into the ideal candidate well in advance of the interview. This book doesn't just give you a collection of questions and answers, it walks you through the process of coming up with the solution so you learn the skills and techniques to shine on whatever problems you’re given. This edition combines a thoroughly revised basis in classic questions involving fundamental data structures and algorithms with problems and step-by-step procedures for new topics including probability, data science, statistics, and machine learning which will help you fully prepare for whatever comes your way. Learn what the interviewer needs to hear to move you forward in the process Adopt an effective approach to phone screens with non-technical recruiters Examine common interview problems and tests with expert explanations Be ready to demonstrate your skills verbally, in contests, on GitHub, and more Technical jobs require the skillset, but you won’t get hired unless you are able to effectively and efficiently demonstrate that skillset under pressure, in competition with hundreds of others with the same background. Programming Interviews Exposed teaches you the interview skills you need to stand out as the best applicant to help you get the job you want.
  data science interview prep book: Grokking the Java Interview Javin Paul, 2021-01-26 Cracking Java Interview is not easy and one of the main reasons for that is Java is very vast. There are a lot of concepts and APIs to master to become a decent Java developer. Many people who are good at general topics like Data Structure and Algorithms, System Design, SQL, and Database fail to crack the Java interview because they don't spend time to learn the Core Java concepts and essential APIs and packages like Java Collection Framework, Multithreading, JVM Internals, JDBC, Design Patterns, and Object-Oriented Programming. This book aims to fill that gap and introduce you to classical Java interview questions from these topics. By going through these questiosn and topic you will not only expand your knowledge but also get ready for your Next Java interview. If you are preparing for Java interviews then I highly recommend you to go through these questions befor your telephonic or face-to-face interviews, you will not only gain confidence and knowelge to answer the question but also learn how to drive Java interview in your favor. This is the single most important tip I can give you as a Java developer. Always, remember, your answers drive interviews, and these questions will show you how to drive Interviewer to your strong areas. All the best for the Java interview and if you have any questions or feedback you can always contact me on twitter javinpaul (http: //twitter.com/javinpaul) or comment on my blogs Javarevisited(http: //javarevisited.blogspot.com) and Java67(http: //java67.c
Data Science Interview: Prep for SQL, Panda, Python, R …
Data science is altering data using a variety of technical analysis approaches to derive useful insights that data analysts may apply to their business scenarios.

Data Science Interview Questions Statistics - Tanujit's Blog
Data Science: Q1. What is Data Science? List the differences between supervised and unsupervised learning. Data Science is a blend of various tools, algorithms, and machine learning principles …

Quant, FM, and Data Science Interview Compilation - LSU
Discuss algorithms for parallel matrix multiplication. Design a risk and asset pricing model for tech startup equity. Discuss ordinary least squares (OLS), maximum likelihood (MLE), and maximum a …

Machine Learning/Data Science Interview Cheat sheets
This document contains cheat sheets on various topics asked during a Machine Learn- ing/Data science interview. This document is constantly updated to include more topics. Click here to get …

The Complete Collection of Data Science Cheat Sheets
A collection of cheat sheets that will help you prepare for a technical interview, assessment tests, class presentation, and help you revise core data science concepts. Majority of technical …

Prep Kit Rd. 1 Interview Candidate - DoorDash
Case Focus: The interview will focus on DoorDash’s 3-sided Marketplace, and will require you to talk through a vague data science issue that would be relevant to DoorDash. Below is more …

AI Platform Data Science - microsoft.com
Apr 5, 2021 · So you want a job as a data scientist is a great post by one of our own data scientists, Daniel Miller, about what to do to prepare for a data science interview. It also has some valuable …

Ace The Data Science Interview [PDF] - offsite.creighton.edu
Introducing "Ace the Data Science Interview" by [Your Name] – Your comprehensive guide to conquering the data science interview landscape. This book will: Boost your confidence: Learn …

25 Important Data Science Interview Questions - AlgoTutor
Data science is the field that combines statistical analysis, machine learning, and programming to extract insights from data. 2. What are the key steps in the data science process? The key steps …

Interview Prep Guide
Whether you’re taking your initial screen or your full loop interview, our Data Science leaders and recruiters put together this guide so you know what to expect and how to prepare. We recognize …

Ace The Data Science Interview - es.pir.org
Data Science Interview Questions In collaboration with data scientists industry experts and top counsellors we have put together a list of general data science interview questions and answers …

120 Data Science Interview Questions - epsiloneg.com
120 Data Science Interview Questions 1. What is meant by selection bias? Answer: Selection bias is a type of error that arises when the researcher decides on whom he is going to conduct the …

Demystifying Data Science Interviews - UC Berkeley School of …
What do the roles look like? Defines and monitors metrics. Provides narratives and trends. Builds ML models that power data products and features. Derives and uncovers relationship between data …

Data-Driven Interview Preparation for Data Scientists
After analyzing 150+ real SQL interview questions from 30+ companies, we have the following breakdown of questions by category. The data-driven method works by focusing on the low …

Machine Learning Interview Cheat sheets - GitHub Pages
This document contains cheat sheets on various topics asked during a Machine Learn-ing/Data science interview. This document is constantly updated to include more topics. What is Bias? …

DON’T BE. - Flipkart
Data Science team can offer you the right podium to solve challenging real-world problems and take a giant leap in your career as a Data Scientist. INTERVIEW PREP DOC PHASE 1: Exploratory and …

DATA SCIENCE – ANALYTICS Onsite Interview Guide
Our Data Science team created an interview prep video (available here with or without captions) to help you understand what to expect during your onsite interview, and to provide you with some …

Top 30 Python Interview Questions and Answers - Hackveda
A comprehensive overview of the types of Python interview questions asked in Data Science Interviews at top companies like Amazon, Google, Microsoft, etc. Python has been consistently …

Ace The Data Science Interview 201 Real Interview Questions …
Landing your dream data science job at a prestigious tech giant like FAANG, a cutting-edge startup, or a Wall Street powerhouse requires meticulous preparation. This comprehensive guide equips …

Interview Prep Guide
We are looking for data scientists who can tell a compelling story with data, make data-driven decisions, and impact change through product development and optimization. This guide will …

Data Science Interview: Prep for SQL, Panda, Python, R …
Data science is altering data using a variety of technical analysis approaches to derive useful insights that data analysts may apply to their business scenarios.

Data Science Interview Questions Statistics - Tanujit's Blog
Data Science: Q1. What is Data Science? List the differences between supervised and unsupervised learning. Data Science is a blend of various tools, algorithms, and machine learning principles …

Quant, FM, and Data Science Interview Compilation - LSU
Discuss algorithms for parallel matrix multiplication. Design a risk and asset pricing model for tech startup equity. Discuss ordinary least squares (OLS), maximum likelihood (MLE), and maximum a …

Machine Learning/Data Science Interview Cheat sheets
This document contains cheat sheets on various topics asked during a Machine Learn- ing/Data science interview. This document is constantly updated to include more topics. Click here to get …

The Complete Collection of Data Science Cheat Sheets
A collection of cheat sheets that will help you prepare for a technical interview, assessment tests, class presentation, and help you revise core data science concepts. Majority of technical …

Prep Kit Rd. 1 Interview Candidate - DoorDash
Case Focus: The interview will focus on DoorDash’s 3-sided Marketplace, and will require you to talk through a vague data science issue that would be relevant to DoorDash. Below is more …

AI Platform Data Science - microsoft.com
Apr 5, 2021 · So you want a job as a data scientist is a great post by one of our own data scientists, Daniel Miller, about what to do to prepare for a data science interview. It also has some valuable …

Ace The Data Science Interview [PDF] - offsite.creighton.edu
Introducing "Ace the Data Science Interview" by [Your Name] – Your comprehensive guide to conquering the data science interview landscape. This book will: Boost your confidence: Learn …

25 Important Data Science Interview Questions - AlgoTutor
Data science is the field that combines statistical analysis, machine learning, and programming to extract insights from data. 2. What are the key steps in the data science process? The key steps …

Interview Prep Guide
Whether you’re taking your initial screen or your full loop interview, our Data Science leaders and recruiters put together this guide so you know what to expect and how to prepare. We recognize …

Ace The Data Science Interview - es.pir.org
Data Science Interview Questions In collaboration with data scientists industry experts and top counsellors we have put together a list of general data science interview questions and answers …

120 Data Science Interview Questions - epsiloneg.com
120 Data Science Interview Questions 1. What is meant by selection bias? Answer: Selection bias is a type of error that arises when the researcher decides on whom he is going to conduct the …

Demystifying Data Science Interviews - UC Berkeley School of …
What do the roles look like? Defines and monitors metrics. Provides narratives and trends. Builds ML models that power data products and features. Derives and uncovers relationship between data …

Data-Driven Interview Preparation for Data Scientists
After analyzing 150+ real SQL interview questions from 30+ companies, we have the following breakdown of questions by category. The data-driven method works by focusing on the low …

Machine Learning Interview Cheat sheets - GitHub Pages
This document contains cheat sheets on various topics asked during a Machine Learn-ing/Data science interview. This document is constantly updated to include more topics. What is Bias? …

DON’T BE. - Flipkart
Data Science team can offer you the right podium to solve challenging real-world problems and take a giant leap in your career as a Data Scientist. INTERVIEW PREP DOC PHASE 1: Exploratory and …

DATA SCIENCE – ANALYTICS Onsite Interview Guide
Our Data Science team created an interview prep video (available here with or without captions) to help you understand what to expect during your onsite interview, and to provide you with some …

Top 30 Python Interview Questions and Answers - Hackveda
A comprehensive overview of the types of Python interview questions asked in Data Science Interviews at top companies like Amazon, Google, Microsoft, etc. Python has been consistently …

Ace The Data Science Interview 201 Real Interview …
Landing your dream data science job at a prestigious tech giant like FAANG, a cutting-edge startup, or a Wall Street powerhouse requires meticulous preparation. This comprehensive guide equips …

Interview Prep Guide
We are looking for data scientists who can tell a compelling story with data, make data-driven decisions, and impact change through product development and optimization. This guide will …