Advertisement
data science and software development: Perspectives on Data Science for Software Engineering Tim Menzies, Laurie Williams, Thomas Zimmermann, 2016-07-14 Perspectives on Data Science for Software Engineering presents the best practices of seasoned data miners in software engineering. The idea for this book was created during the 2014 conference at Dagstuhl, an invitation-only gathering of leading computer scientists who meet to identify and discuss cutting-edge informatics topics. At the 2014 conference, the concept of how to transfer the knowledge of experts from seasoned software engineers and data scientists to newcomers in the field highlighted many discussions. While there are many books covering data mining and software engineering basics, they present only the fundamentals and lack the perspective that comes from real-world experience. This book offers unique insights into the wisdom of the community's leaders gathered to share hard-won lessons from the trenches. Ideas are presented in digestible chapters designed to be applicable across many domains. Topics included cover data collection, data sharing, data mining, and how to utilize these techniques in successful software projects. Newcomers to software engineering data science will learn the tips and tricks of the trade, while more experienced data scientists will benefit from war stories that show what traps to avoid. - Presents the wisdom of community experts, derived from a summit on software analytics - Provides contributed chapters that share discrete ideas and technique from the trenches - Covers top areas of concern, including mining security and social data, data visualization, and cloud-based data - Presented in clear chapters designed to be applicable across many domains |
data science and software development: Software Engineering for Data Scientists Catherine Nelson, 2024-04-16 Data science happens in code. The ability to write reproducible, robust, scaleable code is key to a data science project's success—and is absolutely essential for those working with production code. This practical book bridges the gap between data science and software engineering,and clearly explains how to apply the best practices from software engineering to data science. Examples are provided in Python, drawn from popular packages such as NumPy and pandas. If you want to write better data science code, this guide covers the essential topics that are often missing from introductory data science or coding classes, including how to: Understand data structures and object-oriented programming Clearly and skillfully document your code Package and share your code Integrate data science code with a larger code base Learn how to write APIs Create secure code Apply best practices to common tasks such as testing, error handling, and logging Work more effectively with software engineers Write more efficient, maintainable, and robust code in Python Put your data science projects into production And more |
data science and software development: Think Like a Data Scientist Brian Godsey, 2017-03-09 Summary Think Like a Data Scientist presents a step-by-step approach to data science, combining analytic, programming, and business perspectives into easy-to-digest techniques and thought processes for solving real world data-centric problems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Data collected from customers, scientific measurements, IoT sensors, and so on is valuable only if you understand it. Data scientists revel in the interesting and rewarding challenge of observing, exploring, analyzing, and interpreting this data. Getting started with data science means more than mastering analytic tools and techniques, however; the real magic happens when you begin to think like a data scientist. This book will get you there. About the Book Think Like a Data Scientist teaches you a step-by-step approach to solving real-world data-centric problems. By breaking down carefully crafted examples, you'll learn to combine analytic, programming, and business perspectives into a repeatable process for extracting real knowledge from data. As you read, you'll discover (or remember) valuable statistical techniques and explore powerful data science software. More importantly, you'll put this knowledge together using a structured process for data science. When you've finished, you'll have a strong foundation for a lifetime of data science learning and practice. What's Inside The data science process, step-by-step How to anticipate problems Dealing with uncertainty Best practices in software and scientific thinking About the Reader Readers need beginner programming skills and knowledge of basic statistics. About the Author Brian Godsey has worked in software, academia, finance, and defense and has launched several data-centric start-ups. Table of Contents PART 1 - PREPARING AND GATHERING DATA AND KNOWLEDGE Philosophies of data science Setting goals by asking good questions Data all around us: the virtual wilderness Data wrangling: from capture to domestication Data assessment: poking and prodding PART 2 - BUILDING A PRODUCT WITH SOFTWARE AND STATISTICS Developing a plan Statistics and modeling: concepts and foundations Software: statistics in action Supplementary software: bigger, faster, more efficient Plan execution: putting it all together PART 3 - FINISHING OFF THE PRODUCT AND WRAPPING UP Delivering a product After product delivery: problems and revisions Wrapping up: putting the project away |
data science and software development: Software Engineering for Data Scientists Catherine Nelson, 2024-10 Data science happens in code. The ability to write reproducible, robust, scaleable code is key to a data science project's success--and is absolutely essential for those working with production code. This practical book bridges the gap between data science and software engineering, clearly explaining how to apply the best practices from software engineering to data science. Examples are provided in Python, drawn from popular packages such as NumPy and pandas. If you want to write better data science code, this guide covers the essential topics you need (and that are often missing from introductory data science or coding classes), including how to: Understand data structures and object-oriented programming Clearly and skillfully document your code Package and share your code Integrate data science code with a larger codebase Write APIs Create secure code Apply best practices to common tasks such as testing, error handling, and logging Work more effectively with software engineers Write more efficient, maintainable, and robust code in Python Put your data science projects into production And more |
data science and software development: The Art and Science of Analyzing Software Data Christian Bird, Tim Menzies, Thomas Zimmermann, 2015-09-02 The Art and Science of Analyzing Software Data provides valuable information on analysis techniques often used to derive insight from software data. This book shares best practices in the field generated by leading data scientists, collected from their experience training software engineering students and practitioners to master data science. The book covers topics such as the analysis of security data, code reviews, app stores, log files, and user telemetry, among others. It covers a wide variety of techniques such as co-change analysis, text analysis, topic analysis, and concept analysis, as well as advanced topics such as release planning and generation of source code comments. It includes stories from the trenches from expert data scientists illustrating how to apply data analysis in industry and open source, present results to stakeholders, and drive decisions. - Presents best practices, hints, and tips to analyze data and apply tools in data science projects - Presents research methods and case studies that have emerged over the past few years to further understanding of software data - Shares stories from the trenches of successful data science initiatives in industry |
data science and software development: Analyzing the Analyzers Harlan Harris, Sean Murphy, Marck Vaisman, 2013-06-10 Despite the excitement around data science, big data, and analytics, the ambiguity of these terms has led to poor communication between data scientists and organizations seeking their help. In this report, authors Harlan Harris, Sean Murphy, and Marck Vaisman examine their survey of several hundred data science practitioners in mid-2012, when they asked respondents how they viewed their skills, careers, and experiences with prospective employers. The results are striking. Based on the survey data, the authors found that data scientists today can be clustered into four subgroups, each with a different mix of skillsets. Their purpose is to identify a new, more precise vocabulary for data science roles, teams, and career paths. This report describes: Four data scientist clusters: Data Businesspeople, Data Creatives, Data Developers, and Data Researchers Cases in miscommunication between data scientists and organizations looking to hire Why T-shaped data scientists have an advantage in breadth and depth of skills How organizations can apply the survey results to identify, train, integrate, team up, and promote data scientists |
data science and software development: Data Science from Scratch Joel Grus, 2015-04-14 Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases |
data science and software development: Sharing Data and Models in Software Engineering Tim Menzies, Ekrem Kocaguneli, Burak Turhan, Leandro Minku, Fayola Peters, 2014-12-22 Data Science for Software Engineering: Sharing Data and Models presents guidance and procedures for reusing data and models between projects to produce results that are useful and relevant. Starting with a background section of practical lessons and warnings for beginner data scientists for software engineering, this edited volume proceeds to identify critical questions of contemporary software engineering related to data and models. Learn how to adapt data from other organizations to local problems, mine privatized data, prune spurious information, simplify complex results, how to update models for new platforms, and more. Chapters share largely applicable experimental results discussed with the blend of practitioner focused domain expertise, with commentary that highlights the methods that are most useful, and applicable to the widest range of projects. Each chapter is written by a prominent expert and offers a state-of-the-art solution to an identified problem facing data scientists in software engineering. Throughout, the editors share best practices collected from their experience training software engineering students and practitioners to master data science, and highlight the methods that are most useful, and applicable to the widest range of projects. - Shares the specific experience of leading researchers and techniques developed to handle data problems in the realm of software engineering - Explains how to start a project of data science for software engineering as well as how to identify and avoid likely pitfalls - Provides a wide range of useful qualitative and quantitative principles ranging from very simple to cutting edge research - Addresses current challenges with software engineering data such as lack of local data, access issues due to data privacy, increasing data quality via cleaning of spurious chunks in data |
data science and software development: Contemporary Empirical Methods in Software Engineering Michael Felderer, Guilherme Horta Travassos, 2020-08-27 This book presents contemporary empirical methods in software engineering related to the plurality of research methodologies, human factors, data collection and processing, aggregation and synthesis of evidence, and impact of software engineering research. The individual chapters discuss methods that impact the current evolution of empirical software engineering and form the backbone of future research. Following an introductory chapter that outlines the background of and developments in empirical software engineering over the last 50 years and provides an overview of the subsequent contributions, the remainder of the book is divided into four parts: Study Strategies (including e.g. guidelines for surveys or design science); Data Collection, Production, and Analysis (highlighting approaches from e.g. data science, biometric measurement, and simulation-based studies); Knowledge Acquisition and Aggregation (highlighting literature research, threats to validity, and evidence aggregation); and Knowledge Transfer (discussing open science and knowledge transfer with industry). Empirical methods like experimentation have become a powerful means of advancing the field of software engineering by providing scientific evidence on software development, operation, and maintenance, but also by supporting practitioners in their decision-making and learning processes. Thus the book is equally suitable for academics aiming to expand the field and for industrial researchers and practitioners looking for novel ways to check the validity of their assumptions and experiences. Chapter 17 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com. |
data science and software development: R Programming for Data Science Roger D. Peng, 2012-04-19 Data science has taken the world by storm. Every field of study and area of business has been affected as people increasingly realize the value of the incredible quantities of data being generated. But to extract value from those data, one needs to be trained in the proper data science skills. The R programming language has become the de facto programming language for data science. Its flexibility, power, sophistication, and expressiveness have made it an invaluable tool for data scientists around the world. This book is about the fundamentals of R programming. You will get started with the basics of the language, learn how to manipulate datasets, how to write functions, and how to debug and optimize code. With the fundamentals provided in this book, you will have a solid foundation on which to build your data science toolbox. |
data science and software development: Software Engineering for Science Jeffrey C. Carver, Neil P. Chue Hong, George K. Thiruvathukal, 2016-11-03 Software Engineering for Science provides an in-depth collection of peer-reviewed chapters that describe experiences with applying software engineering practices to the development of scientific software. It provides a better understanding of how software engineering is and should be practiced, and which software engineering practices are effective for scientific software. The book starts with a detailed overview of the Scientific Software Lifecycle, and a general overview of the scientific software development process. It highlights key issues commonly arising during scientific software development, as well as solutions to these problems. The second part of the book provides examples of the use of testing in scientific software development, including key issues and challenges. The chapters then describe solutions and case studies aimed at applying testing to scientific software development efforts. The final part of the book provides examples of applying software engineering techniques to scientific software, including not only computational modeling, but also software for data management and analysis. The authors describe their experiences and lessons learned from developing complex scientific software in different domains. About the Editors Jeffrey Carver is an Associate Professor in the Department of Computer Science at the University of Alabama. He is one of the primary organizers of the workshop series on Software Engineering for Science (http://www.SE4Science.org/workshops). Neil P. Chue Hong is Director of the Software Sustainability Institute at the University of Edinburgh. His research interests include barriers and incentives in research software ecosystems and the role of software as a research object. George K. Thiruvathukal is Professor of Computer Science at Loyola University Chicago and Visiting Faculty at Argonne National Laboratory. His current research is focused on software metrics in open source mathematical and scientific software. |
data science and software development: Data Smart John W. Foreman, 2013-10-31 Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the data scientist, toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know. |
data science and software development: Data Science in Education Using R Ryan A. Estrellado, Emily Freer, Joshua M. Rosenberg, Isabella C. Velásquez, 2020-10-26 Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a learn by doing approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development. |
data science and software development: Software Development and Reality Construction Christiane Floyd, Heinz Züllighoven, Reinhard Budde, Reinhard Keil-Slawik, 2012-12-06 The present book is based on the conference Software Development and Reality Construction held at SchloB Eringerfeld in Germany, September 25 - 30, 1988. This was organized by the Technical University of Berlin (TUB) in cooperation with the German National Research Center for Computer Science (GMD), Sankt Augustin, and sponsored by the Volkswagen Foundation whose financial support we gratefully acknowledge. The conference was an interdisciplinary scientific and cultural event aimed at promoting discussion on the nature of computer science as a scientific discipline and on the theoretical foundations and systemic practice required for human-oriented system design. In keeping with the conversational style of the conference, the book comprises a series of individual contributions, arranged so as to form a coherent whole. Some authors reflect on their practice in computer science and system design. Others start from approaches developed in the humanities and the social sciences for understanding human learning and creativity, individual and cooperative work, and the interrelation between technology and organizations. Thus, each contribution makes its specific point and can be read on its own merit. But, at the same time, it takes its place as a chapter in the book, along with all the other contributions, to give what seemed to us a meaningful overall line of argumentation. This required careful editorial coordination, and we are grateful to all the authors for bearing with us throughout the slow genesis of the book and for complying with our requests for extensive revision of some of the manuscripts. |
data science and software development: Python for Data Science Erick Thompson, 2020-10-30 |
data science and software development: Code Simplicity Max Kanat-Alexander, 2012-03-23 Good software design is simple and easy to understand. Unfortunately, the average computer program today is so complex that no one could possibly comprehend how all the code works. This concise guide helps you understand the fundamentals of good design through scientific laws—principles you can apply to any programming language or project from here to eternity. Whether you’re a junior programmer, senior software engineer, or non-technical manager, you’ll learn how to create a sound plan for your software project, and make better decisions about the pattern and structure of your system. Discover why good software design has become the missing science Understand the ultimate purpose of software and the goals of good design Determine the value of your design now and in the future Examine real-world examples that demonstrate how a system changes over time Create designs that allow for the most change in the environment with the least change in the software Make easier changes in the future by keeping your code simpler now Gain better knowledge of your software’s behavior with more accurate tests |
data science and software development: Agile Data Science Russell Jurney, 2013-10-15 Mining big data requires a deep investment in people and time. How can you be sure you’re building the right models? With this hands-on book, you’ll learn a flexible toolset and methodology for building effective analytics applications with Hadoop. Using lightweight tools such as Python, Apache Pig, and the D3.js library, your team will create an agile environment for exploring data, starting with an example application to mine your own email inboxes. You’ll learn an iterative approach that enables you to quickly change the kind of analysis you’re doing, depending on what the data is telling you. All example code in this book is available as working Heroku apps. Create analytics applications by using the agile big data development methodology Build value from your data in a series of agile sprints, using the data-value stack Gain insight by using several data structures to extract multiple features from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future, and translate predictions into action Get feedback from users after each sprint to keep your project on track |
data science and software development: R for Data Science Hadley Wickham, Garrett Grolemund, 2016-12-12 Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true signals in your dataset Communicate—learn R Markdown for integrating prose, code, and results |
data science and software development: Beginning Data Science in R Thomas Mailund, 2017-03-09 Discover best practices for data analysis and software development in R and start on the path to becoming a fully-fledged data scientist. This book teaches you techniques for both data manipulation and visualization and shows you the best way for developing new software packages for R. Beginning Data Science in R details how data science is a combination of statistics, computational science, and machine learning. You’ll see how to efficiently structure and mine data to extract useful patterns and build mathematical models. This requires computational methods and programming, and R is an ideal programming language for this. This book is based on a number of lecture notes for classes the author has taught on data science and statistical programming using the R programming language. Modern data analysis requires computational skills and usually a minimum of programming. What You Will Learn Perform data science and analytics using statistics and the R programming language Visualize and explore data, including working with large data sets found in big data Build an R package Test and check your code Practice version control Profile and optimize your code Who This Book Is For Those with some data science or analytics background, but not necessarily experience with the R programming language. |
data science and software development: Advances in Machine Learning Applications in Software Engineering Zhang, Du, Tsai, Jeffery J.P., 2006-10-31 This book provides analysis, characterization and refinement of software engineering data in terms of machine learning methods. It depicts applications of several machine learning approaches in software systems development and deployment, and the use of machine learning methods to establish predictive models for software quality while offering readers suggestions by proposing future work in this emerging research field--Provided by publisher. |
data science and software development: Agile Data Science 2.0 Russell Jurney, 2017-06-07 Data science teams looking to turn research into useful analytics applications require not only the right tools, but also the right approach if they’re to succeed. With the revised second edition of this hands-on guide, up-and-coming data scientists will learn how to use the Agile Data Science development methodology to build data applications with Python, Apache Spark, Kafka, and other tools. Author Russell Jurney demonstrates how to compose a data platform for building, deploying, and refining analytics applications with Apache Kafka, MongoDB, ElasticSearch, d3.js, scikit-learn, and Apache Airflow. You’ll learn an iterative approach that lets you quickly change the kind of analysis you’re doing, depending on what the data is telling you. Publish data science work as a web application, and affect meaningful change in your organization. Build value from your data in a series of agile sprints, using the data-value pyramid Extract features for statistical models from a single dataset Visualize data with charts, and expose different aspects through interactive reports Use historical data to predict the future via classification and regression Translate predictions into actions Get feedback from users after each sprint to keep your project on track |
data science and software development: Methodologies and Applications of Computational Statistics for Machine Intelligence Debabrata Samanta, Raghavendra Rao Althar, Sabyasachi Pramanik, Soumi Dutta, 2021 This book delves into computational statistics that focus on devising an efficient methodology to obtain quantitative solutions for problems that are devised quantitatively and brings together computational capability and statistical advanced thought processes to solve some of the problems encountered in the field-- |
data science and software development: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field. |
data science and software development: Software Engineering at Google Titus Winters, Tom Manshreck, Hyrum Wright, 2020-02-28 Today, software engineers need to know not only how to program effectively but also how to develop proper engineering practices to make their codebase sustainable and healthy. This book emphasizes this difference between programming and software engineering. How can software engineers manage a living codebase that evolves and responds to changing requirements and demands over the length of its life? Based on their experience at Google, software engineers Titus Winters and Hyrum Wright, along with technical writer Tom Manshreck, present a candid and insightful look at how some of the worldâ??s leading practitioners construct and maintain software. This book covers Googleâ??s unique engineering culture, processes, and tools and how these aspects contribute to the effectiveness of an engineering organization. Youâ??ll explore three fundamental principles that software organizations should keep in mind when designing, architecting, writing, and maintaining code: How time affects the sustainability of software and how to make your code resilient over time How scale affects the viability of software practices within an engineering organization What trade-offs a typical engineer needs to make when evaluating design and development decisions |
data science and software development: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians. |
data science and software development: Programming Machine Learning Paolo Perrotta, 2020-03-31 You've decided to tackle machine learning - because you're job hunting, embarking on a new project, or just think self-driving cars are cool. But where to start? It's easy to be intimidated, even as a software developer. The good news is that it doesn't have to be that hard. Master machine learning by writing code one line at a time, from simple learning programs all the way to a true deep learning system. Tackle the hard topics by breaking them down so they're easier to understand, and build your confidence by getting your hands dirty. Peel away the obscurities of machine learning, starting from scratch and going all the way to deep learning. Machine learning can be intimidating, with its reliance on math and algorithms that most programmers don't encounter in their regular work. Take a hands-on approach, writing the Python code yourself, without any libraries to obscure what's really going on. Iterate on your design, and add layers of complexity as you go. Build an image recognition application from scratch with supervised learning. Predict the future with linear regression. Dive into gradient descent, a fundamental algorithm that drives most of machine learning. Create perceptrons to classify data. Build neural networks to tackle more complex and sophisticated data sets. Train and refine those networks with backpropagation and batching. Layer the neural networks, eliminate overfitting, and add convolution to transform your neural network into a true deep learning system. Start from the beginning and code your way to machine learning mastery. What You Need: The examples in this book are written in Python, but don't worry if you don't know this language: you'll pick up all the Python you need very quickly. Apart from that, you'll only need your computer, and your code-adept brain. |
data science and software development: Machine Learning Bookcamp Alexey Grigorev, 2021-11-23 The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning. |
data science and software development: Building a Career in Software Daniel Heller, 2020-09-27 Software engineering education has a problem: universities and bootcamps teach aspiring engineers to write code, but they leave graduates to teach themselves the countless supporting tools required to thrive in real software companies. Building a Career in Software is the solution, a comprehensive guide to the essential skills that instructors don't need and professionals never think to teach: landing jobs, choosing teams and projects, asking good questions, running meetings, going on-call, debugging production problems, technical writing, making the most of a mentor, and much more. In over a decade building software at companies such as Apple and Uber, Daniel Heller has mentored and managed tens of engineers from a variety of training backgrounds, and those engineers inspired this book with their hundreds of questions about career issues and day-to-day problems. Designed for either random access or cover-to-cover reading, it offers concise treatments of virtually every non-technical challenge you will face in the first five years of your career—as well as a selection of industry-focused technical topics rarely covered in training. Whatever your education or technical specialty, Building a Career in Software can save you years of trial and error and help you succeed as a real-world software professional. What You Will Learn Discover every important nontechnical facet of professional programming as well as several key technical practices essential to the transition from student to professional Build relationships with your employer Improve your communication, including technical writing, asking good questions, and public speaking Who This Book is For Software engineers either early in their careers or about to transition to the professional world; that is, all graduates of computer science or software engineering university programs and all software engineering boot camp participants. |
data science and software development: Trends of Data Science and Applications Siddharth Swarup Rautaray, Phani Pemmaraju, Hrushikesha Mohanty, 2021-03-21 This book includes an extended version of selected papers presented at the 11th Industry Symposium 2021 held during January 7–10, 2021. The book covers contributions ranging from theoretical and foundation research, platforms, methods, applications, and tools in all areas. It provides theory and practices in the area of data science, which add a social, geographical, and temporal dimension to data science research. It also includes application-oriented papers that prepare and use data in discovery research. This book contains chapters from academia as well as practitioners on big data technologies, artificial intelligence, machine learning, deep learning, data representation and visualization, business analytics, healthcare analytics, bioinformatics, etc. This book is helpful for the students, practitioners, researchers as well as industry professional. |
data science and software development: Python Data Science Handbook Jake VanderPlas, 2016-11-21 For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms |
data science and software development: Introduction to Data Science Laura Igual, Santi Seguí, 2017-02-22 This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website. |
data science and software development: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
data science and software development: Guide to Advanced Empirical Software Engineering Forrest Shull, Janice Singer, Dag I. K. Sjøberg, 2007-11-21 This book gathers chapters from some of the top international empirical software engineering researchers focusing on the practical knowledge necessary for conducting, reporting and using empirical methods in software engineering. Topics and features include guidance on how to design, conduct and report empirical studies. The volume also provides information across a range of techniques, methods and qualitative and quantitative issues to help build a toolkit applicable to the diverse software development contexts |
data science and software development: Python and R for the Modern Data Scientist Rick J. Scavetta, Boyan Angelov, 2021-06-22 Success in data science depends on the flexible and appropriate use of tools. That includes Python and R, two of the foundational programming languages in the field. This book guides data scientists from the Python and R communities along the path to becoming bilingual. By recognizing the strengths of both languages, you'll discover new ways to accomplish data science tasks and expand your skill set. Authors Rick Scavetta and Boyan Angelov explain the parallel structures of these languages and highlight where each one excels, whether it's their linguistic features or the powers of their open source ecosystems. You'll learn how to use Python and R together in real-world settings and broaden your job opportunities as a bilingual data scientist. Learn Python and R from the perspective of your current language Understand the strengths and weaknesses of each language Identify use cases where one language is better suited than the other Understand the modern open source ecosystem available for both, including packages, frameworks, and workflows Learn how to integrate R and Python in a single workflow Follow a case study that demonstrates ways to use these languages together |
data science and software development: Software Design X-Rays Adam Tornhill, 2018-03-08 Are you working on a codebase where cost overruns, death marches, and heroic fights with legacy code monsters are the norm? Battle these adversaries with novel ways to identify and prioritize technical debt, based on behavioral data from how developers work with code. And that's just for starters. Because good code involves social design, as well as technical design, you can find surprising dependencies between people and code to resolve coordination bottlenecks among teams. Best of all, the techniques build on behavioral data that you already have: your version-control system. Join the fight for better code! Use statistics and data science to uncover both problematic code and the behavioral patterns of the developers who build your software. This combination gives you insights you can't get from the code alone. Use these insights to prioritize refactoring needs, measure their effect, find implicit dependencies between different modules, and automatically create knowledge maps of your system based on actual code contributions. In a radical, much-needed change from common practice, guide organizational decisions with objective data by measuring how well your development teams align with the software architecture. Discover a comprehensive set of practical analysis techniques based on version-control data, where each point is illustrated with a case study from a real-world codebase. Because the techniques are language neutral, you can apply them to your own code no matter what programming language you use. Guide organizational decisions with objective data by measuring how well your development teams align with the software architecture. Apply research findings from social psychology to software development, ensuring you get the tools you need to coach your organization towards better code. If you're an experienced programmer, software architect, or technical manager, you'll get a new perspective that will change how you work with code. What You Need: You don't have to install anything to follow along in the book. TThe case studies in the book use well-known open source projects hosted on GitHub. You'll use CodeScene, a free software analysis tool for open source projects, for the case studies. We also discuss alternative tooling options where they exist. |
data science and software development: Storytelling with Data Cole Nussbaumer Knaflic, 2015-10-09 Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it! |
data science and software development: Executive Data Science Roger Peng, 2016-08-03 In this concise book you will learn what you need to know to begin assembling and leading a data science enterprise, even if you have never worked in data science before. You'll get a crash course in data science so that you'll be conversant in the field and understand your role as a leader. You'll also learn how to recruit, assemble, evaluate, and develop a team with complementary skill sets and roles. You'll learn the structure of the data science pipeline, the goals of each stage, and how to keep your team on target throughout. Finally, you'll learn some down-to-earth practical skills that will help you overcome the common challenges that frequently derail data science projects. |
data science and software development: Data Science and Analytics with Python Jesus Rogel-Salazar, 2018-02-05 Data Science and Analytics with Python is designed for practitioners in data science and data analytics in both academic and business environments. The aim is to present the reader with the main concepts used in data science using tools developed in Python, such as SciKit-learn, Pandas, Numpy, and others. The use of Python is of particular interest, given its recent popularity in the data science community. The book can be used by seasoned programmers and newcomers alike. The book is organized in a way that individual chapters are sufficiently independent from each other so that the reader is comfortable using the contents as a reference. The book discusses what data science and analytics are, from the point of view of the process and results obtained. Important features of Python are also covered, including a Python primer. The basic elements of machine learning, pattern recognition, and artificial intelligence that underpin the algorithms and implementations used in the rest of the book also appear in the first part of the book. Regression analysis using Python, clustering techniques, and classification algorithms are covered in the second part of the book. Hierarchical clustering, decision trees, and ensemble techniques are also explored, along with dimensionality reduction techniques and recommendation systems. The support vector machine algorithm and the Kernel trick are discussed in the last part of the book. About the Author Dr. Jesús Rogel-Salazar is a Lead Data scientist with experience in the field working for companies such as AKQA, IBM Data Science Studio, Dow Jones and others. He is a visiting researcher at the Department of Physics at Imperial College London, UK and a member of the School of Physics, Astronomy and Mathematics at the University of Hertfordshire, UK, He obtained his doctorate in physics at Imperial College London for work on quantum atom optics and ultra-cold matter. He has held a position as senior lecturer in mathematics as well as a consultant in the financial industry since 2006. He is the author of the book Essential Matlab and Octave, also published by CRC Press. His interests include mathematical modelling, data science, and optimization in a wide range of applications including optics, quantum mechanics, data journalism, and finance. |
data science and software development: Data Democracy Feras A. Batarseh, Ruixin Yang, 2020-01-28 This book provides a manifesto to data democracy. After reading the chapters of this book, you are informed and suitably warned! You are already part of the data republic, and you (and all of us) need to ensure that our data fall in the right hands. Everything you click, buy, swipe, try, sell, drive, or fly is a data point. But who owns the data? At this point, not you! You do not even have access to most of it. The next best empire of our planet is one who owns and controls the world's best dataset. If you consume or create data, if you are a citizen of the data republic (willingly or grudgingly), and if you are interested in making a decision or finding the truth through data-driven analysis, this book is for you. A group of experts, academics, data science researchers, and industry practitioners gathered to write this manifesto about data democracy. - The future of the data republic, life within a data democracy, and our digital freedoms. - An in-depth analysis of open science, open data, open source software, and their future challenges. - A comprehensive review of data democracy's implications within domains such as: healthcare, space exploration, earth sciences, business, and psychology. - The democratization of Artificial Intelligence (AI), and data issues such as: bias, imbalance, context, and knowledge extraction. - A systematic review of AI methods applied to software engineering problems. |
data science and software development: Learn Python by Building Data Science Applications Philipp Kats, David Katz, 2019-08-30 Understand the constructs of the Python programming language and use them to build data science projects Key FeaturesLearn the basics of developing applications with Python and deploy your first data applicationTake your first steps in Python programming by understanding and using data structures, variables, and loopsDelve into Jupyter, NumPy, Pandas, SciPy, and sklearn to explore the data science ecosystem in PythonBook Description Python is the most widely used programming language for building data science applications. Complete with step-by-step instructions, this book contains easy-to-follow tutorials to help you learn Python and develop real-world data science projects. The “secret sauce” of the book is its curated list of topics and solutions, put together using a range of real-world projects, covering initial data collection, data analysis, and production. This Python book starts by taking you through the basics of programming, right from variables and data types to classes and functions. You’ll learn how to write idiomatic code and test and debug it, and discover how you can create packages or use the range of built-in ones. You’ll also be introduced to the extensive ecosystem of Python data science packages, including NumPy, Pandas, scikit-learn, Altair, and Datashader. Furthermore, you’ll be able to perform data analysis, train models, and interpret and communicate the results. Finally, you’ll get to grips with structuring and scheduling scripts using Luigi and sharing your machine learning models with the world as a microservice. By the end of the book, you’ll have learned not only how to implement Python in data science projects, but also how to maintain and design them to meet high programming standards. What you will learnCode in Python using Jupyter and VS CodeExplore the basics of coding – loops, variables, functions, and classesDeploy continuous integration with Git, Bash, and DVCGet to grips with Pandas, NumPy, and scikit-learnPerform data visualization with Matplotlib, Altair, and DatashaderCreate a package out of your code using poetry and test it with PyTestMake your machine learning model accessible to anyone with the web APIWho this book is for If you want to learn Python or data science in a fun and engaging way, this book is for you. You’ll also find this book useful if you’re a high school student, researcher, analyst, or anyone with little or no coding experience with an interest in the subject and courage to learn, fail, and learn from failing. A basic understanding of how computers work will be useful. |
The Emerging Role of Data Scientists on Software …
how data scientists contribute to software engineering tasks, such as software usage data (telemetry) collection, fault localization and defect prediction, in software development contexts.
Software Engineering Process and Practices for Data Science
Mar 22, 2019 · How can we integrate software engineering into data science for building data intensive software? Examples (Why do we need Software Engineering?) Rajpurkar and et al. …
SE4DA--Software Engineering for Data Analytics
As software development gradually shifts to data analytics development with AI and ML technologies, existing software engineering techniques must be re-imagined to provide the …
Enabling Collaborative Data Science Development with the …
In this work, we show that we can successfully adapt and extend the pull request development model to support collaboration during important steps within the data science process by …
Applying Project-Based Learning to Teach Software Analytics …
We aim at improving the software engineering skills of data science students in order to produce software of higher quality by software analytics. We focus in two skills: following a process and …
Data Science Methodologies: Current Challenges and Future …
data science combines expertise across software development, data management and statistics. As on [18], data science is de-scribed as the field that studies the computational principles, …
Subject-specific Examination Regulations for Data Science and …
The MSc Data Science and Software Development program at Constructor University aims to provide students with an indepth understanding of the essential aspects of designing- and …
Project Management for Data Science - NYU Stern
When I started teaching big data and data science, I discovered there were no papers on methodology for data science (unlike software project management methodology)
Software Engineering for Machine Learning: A Case Study
We consider a nine-stage workflow process informed by prior experiences developing AI applications (e.g., search and NLP) and data science tools (e.g. application diagnostics and …
Innovating the Data Ecosystem: An Update of the Federal Big …
BD R&D expands big data and data science capabilities, providing the foundation for algorithm-driven businesses and catalyzing innovations critical to the nation.
Questions for Data Scientists in Software Engineering: A …
In 2014, a Microsoft study investigated the sort of questions that data science applied to software engineering should answer. This re-sulted in 145 questions that developers considered …
Software Engineering for Data Analytics - University of …
In this article, I summarize findings from studies of professional data scientists and discuss my perspectives on open research problems to improve data-centric software development. // is …
Dell Precision Data Science Workstation: Benchmarks and Best …
The Dell Precision Data Science Workstation (DSW) is a purpose-built product line to address the challenge of integration. It curates a set of latest hardware powered by NVIDIA GPUs as well …
Subject-specific Examination Regulations for Data Science and …
Students will obtain core data science and software development competencies and skills (e.g., programming, data analysis, and machine learning) and they will learn about fundamental …
Data Science from Scratch: The #1 Data Science Guide for …
An interdisciplinary field, data science uses scientific systems, algorithms, processes, and other methods to gain insight and knowledge from data in different forms, both unstructured and …
Tackle the data science process step-by-step - Amazon Web …
In the following pages, I introduce data science as a set of processes and concepts that act as a guide for making progress and decisions within a data-centric project.
How do Data Science Workers Collaborate? Roles, Workflows, …
We found that data science teams are extremely collaborative and work with a variety of stakeholders and tools during the six common steps of a data science workflow (e.g., clean …
1.1 What is data science? - University of Arizona
Data science is the practice of using data to try to understand and solve real-world prob-lems. This concept isn’t exactly new; people have been analyzing sales figures and trends since the …
B.S. Software Development Program Guide - Western …
Bachelor of Science, Software Development The B.S. in Software Development program is designed to meet this growing need while preparing experienced information technology …
The Art and Practice of Data Science Pipelines - arXiv.org
data science pipelines and related concepts in theory, a collection of over 105 implementations of curated data science pipelines from Kaggle competitions to understand data science in-the …
The Emerging Role of Data Scientists on Software Dev…
how data scientists contribute to software engineering tasks, such as software usage data (telemetry) collection, fault localization and …
Software Engineering Process and Practices for D…
Mar 22, 2019 · How can we integrate software engineering into data science for building data intensive software? Examples (Why do we need Software …
SE4DA--Software Engineering for Data Analyt…
As software development gradually shifts to data analytics development with AI and ML technologies, existing software engineering techniques …
Enabling Collaborative Data Science Development wit…
In this work, we show that we can successfully adapt and extend the pull request development model to support collaboration during important steps …
Applying Project-Based Learning to Teach Softwar…
We aim at improving the software engineering skills of data science students in order to produce software of higher quality by software …