Data Science For Civil Engineering



  data science for civil engineering: Data Science for Civil Engineering Rakesh K. Jain, Prashant Shantaram Dhotre, Deepak Tatyasaheb Mane, Parikshit Narendra Mahalle, 2023-05-10 This book explains use of data science-based techniques for modeling and providing optimal solutions to complex problems in civil engineering. It discusses civil engineering problems like air, water and land pollution, climate crisis, transportation infrastructures, traffic and travel modes, mobility services, and so forth. Divided into two sections, the first one deals with the basics of data science and essential mathematics while the second section covers pertinent applications in structural and environmental engineering, construction management, and transportation. Features: Details information on essential mathematics required to implement civil engineering applications using data science techniques. Discusses broad background of data science and its fundamentals. Focusses on structural engineering, transportation systems, water resource management, geomatics, and environmental engineering. Includes python programming libraries to solve complex problems. Addresses various real-world applications of data science based civil engineering use cases. This book aims at senior undergraduate students in Civil Engineering and Applied Data Science.
  data science for civil engineering: Probabilistic Machine Learning for Civil Engineers James-A. Goulet, 2020-04-14 An introduction to key concepts and techniques in probabilistic machine learning for civil engineering students and professionals; with many step-by-step examples, illustrations, and exercises. This book introduces probabilistic machine learning concepts to civil engineering students and professionals, presenting key approaches and techniques in a way that is accessible to readers without a specialized background in statistics or computer science. It presents different methods clearly and directly, through step-by-step examples, illustrations, and exercises. Having mastered the material, readers will be able to understand the more advanced machine learning literature from which this book draws. The book presents key approaches in the three subfields of probabilistic machine learning: supervised learning, unsupervised learning, and reinforcement learning. It first covers the background knowledge required to understand machine learning, including linear algebra and probability theory. It goes on to present Bayesian estimation, which is behind the formulation of both supervised and unsupervised learning methods, and Markov chain Monte Carlo methods, which enable Bayesian estimation in certain complex cases. The book then covers approaches associated with supervised learning, including regression methods and classification methods, and notions associated with unsupervised learning, including clustering, dimensionality reduction, Bayesian networks, state-space models, and model calibration. Finally, the book introduces fundamental concepts of rational decisions in uncertain contexts and rational decision-making in uncertain and sequential contexts. Building on this, the book describes the basics of reinforcement learning, whereby a virtual agent learns how to make optimal decisions through trial and error while interacting with its environment.
  data science for civil engineering: Data Analytics for Engineering and Construction Project Risk Management Ivan Damnjanovic, Kenneth Reinschmidt, 2019-05-23 This book provides a step-by-step guidance on how to implement analytical methods in project risk management. The text focuses on engineering design and construction projects and as such is suitable for graduate students in engineering, construction, or project management, as well as practitioners aiming to develop, improve, and/or simplify corporate project management processes. The book places emphasis on building data-driven models for additive-incremental risks, where data can be collected on project sites, assembled from queries of corporate databases, and/or generated using procedures for eliciting experts’ judgments. While the presented models are mathematically inspired, they are nothing beyond what an engineering graduate is expected to know: some algebra, a little calculus, a little statistics, and, especially, undergraduate-level understanding of the probability theory. The book is organized in three parts and fourteen chapters. In Part I the authors provide the general introduction to risk and uncertainty analysis applied to engineering construction projects. The basic formulations and the methods for risk assessment used during project planning phase are discussed in Part II, while in Part III the authors present the methods for monitoring and (re)assessment of risks during project execution.
  data science for civil engineering: Data Analysis in Pavement Engineering Qiao Dong, Xueqin Chen, Baoshan Huang, 2023-11-06 Data Analysis in Pavement Engineering: Theory and Methodology offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees the significant addition of content addressing coupling problems, including Finite element analysis formulations for coupled problems; Details of algorithms for solving coupled problems; and Examples showing how algorithms can be used to solve for piezoelectricity and poroelasticity problems. Focusing on the core knowledge, mathematical and analytical tools needed for successful application, this book represents the authoritative resource of choice for graduate-level students, researchers and professional engineers involved in finite element-based engineering analysis. - This book is the first comprehensive resource to cover all potential scenarios of data analysis in pavement and transportation infrastructure research, including areas such as materials testing, performance modeling, distress detection, and pavement evaluation. - It provides coverage of significance tests, design of experiments, data mining, data modeling, and supervised and unsupervised machine learning techniques. - It summarizes the latest research in data analysis within pavement engineering, encompassing over 300 research papers. - It delves into the fundamental concepts, elements, and parameters of data analysis, empowering pavement engineers to undertake tasks typically reserved for statisticians and data scientists. - The book presents 21 step-by-step case studies, showcasing the application of the data analysis method to address various problems in pavement engineering and draw meaningful conclusions.
  data science for civil engineering: Structural Health Monitoring Based on Data Science Techniques Alexandre Cury, Diogo Ribeiro, Filippo Ubertini, Michael D. Todd, 2021-10-23 The modern structural health monitoring (SHM) paradigm of transforming in situ, real-time data acquisition into actionable decisions regarding structural performance, health state, maintenance, or life cycle assessment has been accelerated by the rapid growth of “big data” availability and advanced data science. Such data availability coupled with a wide variety of machine learning and data analytics techniques have led to rapid advancement of how SHM is executed, enabling increased transformation from research to practice. This book intends to present a representative collection of such data science advancements used for SHM applications, providing an important contribution for civil engineers, researchers, and practitioners around the world.
  data science for civil engineering: A Primer on Machine Learning Applications in Civil Engineering Paresh Chandra Deka, 2019-10-28 Machine learning has undergone rapid growth in diversification and practicality, and the repertoire of techniques has evolved and expanded. The aim of this book is to provide a broad overview of the available machine-learning techniques that can be utilized for solving civil engineering problems. The fundamentals of both theoretical and practical aspects are discussed in the domains of water resources/hydrological modeling, geotechnical engineering, construction engineering and management, and coastal/marine engineering. Complex civil engineering problems such as drought forecasting, river flow forecasting, modeling evaporation, estimation of dew point temperature, modeling compressive strength of concrete, ground water level forecasting, and significant wave height forecasting are also included. Features Exclusive information on machine learning and data analytics applications with respect to civil engineering Includes many machine learning techniques in numerous civil engineering disciplines Provides ideas on how and where to apply machine learning techniques for problem solving Covers water resources and hydrological modeling, geotechnical engineering, construction engineering and management, coastal and marine engineering, and geographical information systems Includes MATLAB® exercises
  data science for civil engineering: Getting Started with Data Science Murtaza Haider, 2015-12-14 Master Data Analytics Hands-On by Solving Fascinating Problems You’ll Actually Enjoy! Harvard Business Review recently called data science “The Sexiest Job of the 21st Century.” It’s not just sexy: For millions of managers, analysts, and students who need to solve real business problems, it’s indispensable. Unfortunately, there’s been nothing easy about learning data science–until now. Getting Started with Data Science takes its inspiration from worldwide best-sellers like Freakonomics and Malcolm Gladwell’s Outliers: It teaches through a powerful narrative packed with unforgettable stories. Murtaza Haider offers informative, jargon-free coverage of basic theory and technique, backed with plenty of vivid examples and hands-on practice opportunities. Everything’s software and platform agnostic, so you can learn data science whether you work with R, Stata, SPSS, or SAS. Best of all, Haider teaches a crucial skillset most data science books ignore: how to tell powerful stories using graphics and tables. Every chapter is built around real research challenges, so you’ll always know why you’re doing what you’re doing. You’ll master data science by answering fascinating questions, such as: • Are religious individuals more or less likely to have extramarital affairs? • Do attractive professors get better teaching evaluations? • Does the higher price of cigarettes deter smoking? • What determines housing prices more: lot size or the number of bedrooms? • How do teenagers and older people differ in the way they use social media? • Who is more likely to use online dating services? • Why do some purchase iPhones and others Blackberry devices? • Does the presence of children influence a family’s spending on alcohol? For each problem, you’ll walk through defining your question and the answers you’ll need; exploring how others have approached similar challenges; selecting your data and methods; generating your statistics; organizing your report; and telling your story. Throughout, the focus is squarely on what matters most: transforming data into insights that are clear, accurate, and can be acted upon.
  data science for civil engineering: Mechanistic Data Science for STEM Education and Applications Wing Kam Liu, Zhengtao Gan, Mark Fleming, 2022-01-01 This book introduces Mechanistic Data Science (MDS) as a structured methodology for combining data science tools with mathematical scientific principles (i.e., “mechanistic” principles) to solve intractable problems. Traditional data science methodologies require copious quantities of data to show a reliable pattern, but the amount of required data can be greatly reduced by considering the mathematical science principles. MDS is presented here in six easy-to-follow modules: 1) Multimodal data generation and collection, 2) extraction of mechanistic features, 3) knowledge-driven dimension reduction, 4) reduced order surrogate models, 5) deep learning for regression and classification, and 6) system and design. These data science and mechanistic analysis steps are presented in an intuitive manner that emphasizes practical concepts for solving engineering problems as well as real-life problems. This book is written in a spectral style and is ideal as an entry level textbook for engineering and data science undergraduate and graduate students, practicing scientists and engineers, as well as STEM (Science, Technology, Engineering, Mathematics) high school students and teachers.
  data science for civil engineering: Probabilistic Machine Learning Kevin P. Murphy, 2022-03-01 A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.
  data science for civil engineering: The Science and Technology of Civil Engineering Materials J. Francis Young, 1998 For one/two-term courses in Introductory Engineering Materials in departments of civil engineering. Applies the rigor of material science principles to a comprehensive, integrative exploration of the science and technology of construction materials.
  data science for civil engineering: Big Data Analytics in Traffic and Transportation Engineering: Emerging Research and Opportunities Moridpour, Sara, Toran Pour, Alireza, Saghapour, Tayebeh, 2019-01-11 Recent research reveals that socioeconomic factors of the neighborhoods where road users live and where pedestrian-vehicle crashes occur are important in determining the severity of the crashes, with the former having a greater influence. Hence, road safety countermeasures, especially those focusing on the road users, should be targeted at these high risk neighborhoods. Big Data Analytics in Traffic and Transportation Engineering: Emerging Research and Opportunities is an essential reference source that discusses access to transportation and examines vehicle-pedestrian crashes, specifically in relation to socioeconomic factors that influence them, main predictors, factors that contribute to crash severity, and the enhancement of pedestrian safety measures. Featuring research on topics such as public transport, accessibility, and spatial distribution, this book is ideally designed for policymakers, transportation engineers, road safety designers, transport planners and managers, professionals, academicians, researchers, and public administrators.
  data science for civil engineering: Foundations of Data Science for Engineering Problem Solving Parikshit Narendra Mahalle, Gitanjali Rahul Shinde, Priya Dudhale Pise, Jyoti Yogesh Deshmukh, 2021-08-21 This book is one-stop shop which offers essential information one must know and can implement in real-time business expansions to solve engineering problems in various disciplines. It will also help us to make future predictions and decisions using AI algorithms for engineering problems. Machine learning and optimizing techniques provide strong insights into novice users. In the era of big data, there is a need to deal with data science problems in multidisciplinary perspective. In the real world, data comes from various use cases, and there is a need of source specific data science models. Information is drawn from various platforms, channels, and sectors including web-based media, online business locales, medical services studies, and Internet. To understand the trends in the market, data science can take us through various scenarios. It takes help of artificial intelligence and machine learning techniques to design and optimize the algorithms. Big data modelling and visualization techniques of collected data play a vital role in the field of data science. This book targets the researchers from areas of artificial intelligence, machine learning, data science and big data analytics to look for new techniques in business analytics and applications of artificial intelligence in recent businesses.
  data science for civil engineering: Materials for Construction and Civil Engineering M. Clara Gonçalves, Fernanda Margarido, 2015-03-03 This expansive volume presents the essential topics related to construction materials composition and their practical application in structures and civil installations. The book's diverse slate of expert authors assemble invaluable case examples and performance data on the most important groups of materials used in construction, highlighting aspects such as nomenclature, the properties, the manufacturing processes, the selection criteria, the products/applications, the life cycle and recyclability, and the normalization. Civil Engineering Materials: Science, Processing, and Design is ideal for practicing architects; civil, construction, and structural engineers, and serves as a comprehensive reference for students of these disciplines. This book also: · Provides a substantial and detailed overview of traditional materials used in structures and civil infrastructure · Discusses properties of natural and synthetic materials in construction and materials' manufacturing processes · Addresses topics important to professionals working with structural materials, such as corrosion, nanomaterials, materials life cycle, not often covered outside of journal literature · Diverse author team presents expect perspective from civil engineering, construction, and architecture · Features a detailed glossary of terms and over 400 illustrations
  data science for civil engineering: Operational Modal Analysis of Civil Engineering Structures Carlo Rainieri, Giovanni Fabbrocino, 2014-05-16 This book covers all aspects of operational modal analysis for civil engineering, from theoretical background to applications, including measurement hardware, software development, and data processing. In particular, this book provides an extensive description and discussion of OMA methods, their classification and relationship, and advantages and drawbacks. The authors cover both the well-established theoretical background of OMA methods and the most recent developments in the field, providing detailed examples to help the reader better understand the concepts and potentialities of the technique. Additional material is provided (data, software) to help practitioners and students become familiar with OMA. Covering a range of different aspects of OMA, always with the application in mind, the practical perspective adopted in this book makes it ideal for a wide range of readers from researchers to field engineers; graduate and undergraduate students; and technicians interested in structural dynamics, system identification, and Structural Health Monitoring. This book also: Analyzes OMA methods extensively, providing details on implementation not easily found in the literature Offers tutorial for development of customized measurement and data processing systems for LabView and National Instruments programmable hardware Discusses different solutions for automated OMA Contains many explanatory applications on real structures Provides detail on applications of OMA beyond system identification, such as (vibration based monitoring, tensile load estimation, etc.) Includes both theory and applications
  data science for civil engineering: Machine Learning Engineering in Action Ben Wilson, 2022-05-17 Field-tested tips, tricks, and design patterns for building machine learning projects that are deployable, maintainable, and secure from concept to production. In Machine Learning Engineering in Action, you will learn: Evaluating data science problems to find the most effective solution Scoping a machine learning project for usage expectations and budget Process techniques that minimize wasted effort and speed up production Assessing a project using standardized prototyping work and statistical validation Choosing the right technologies and tools for your project Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices Ferrying a machine learning project from your data science team to your end users is no easy task. Machine Learning Engineering in Action will help you make it simple. Inside, you'll find fantastic advice from veteran industry expert Ben Wilson, Principal Resident Solutions Architect at Databricks. Ben introduces his personal toolbox of techniques for building deployable and maintainable production machine learning systems. You'll learn the importance of Agile methodologies for fast prototyping and conferring with stakeholders, while developing a new appreciation for the importance of planning. Adopting well-established software development standards will help you deliver better code management, and make it easier to test, scale, and even reuse your machine learning code. Every method is explained in a friendly, peer-to-peer style and illustrated with production-ready source code. About the technology Deliver maximum performance from your models and data. This collection of reproducible techniques will help you build stable data pipelines, efficient application workflows, and maintainable models every time. Based on decades of good software engineering practice, machine learning engineering ensures your ML systems are resilient, adaptable, and perform in production. About the book Machine Learning Engineering in Action teaches you core principles and practices for designing, building, and delivering successful machine learning projects. You'll discover software engineering techniques like conducting experiments on your prototypes and implementing modular design that result in resilient architectures and consistent cross-team communication. Based on the author's extensive experience, every method in this book has been used to solve real-world projects. What's inside Scoping a machine learning project for usage expectations and budget Choosing the right technologies for your design Making your codebase more understandable, maintainable, and testable Automating your troubleshooting and logging practices About the reader For data scientists who know machine learning and the basics of object-oriented programming. About the author Ben Wilson is Principal Resident Solutions Architect at Databricks, where he developed the Databricks Labs AutoML project, and is an MLflow committer.
  data science for civil engineering: Applied Civil Engineering Risk Analysis Robb Eric S. Moss, 2019-07-31 This updated edition retains its introduction to applied fundamental statistics, probability, reliability, and decision theory as these pertain to problems in Civil Engineering. The new edition adds an expanded treatment of systems reliability, Bayesian methods, and spatial variabililty, along with additional example problems throughout. The book provides readers with the tools needed to determine the probability of failure, and when multiplied by the consequences of failure, illustrates how to assess the risk of civil engineering problems. Presenting methods for quantifying uncertainty that exists in engineering analysis and design, with an emphasis on fostering more accurate analysis and design, the text is ideal for students and practitioners of a range of civil engineering disciplines. Expands on the class-tested pedagogy from the first edition with more material and more examples; Broadens understanding with simulations coded both in Matlab and in R; Features new chapters on spatial variability and Bayesian methods; Emphasizes techniques for estimating the influence of uncertainty on the probability of failure
  data science for civil engineering: Building Materials in Civil Engineering Haimei Zhang, 2011-05-09 The construction of buildings and structures relies on having a thorough understanding of building materials. Without this knowledge it would not be possible to build safe, efficient and long-lasting buildings, structures and dwellings. Building materials in civil engineering provides an overview of the complete range of building materials available to civil engineers and all those involved in the building and construction industries.The book begins with an introductory chapter describing the basic properties of building materials. Further chapters cover the basic properties of building materials, air hardening cement materials, cement, concrete, building mortar, wall and roof materials, construction steel, wood, waterproof materials, building plastics, heat-insulating materials and sound-absorbing materials and finishing materials. Each chapter includes a series of questions, allowing readers to test the knowledge they have gained. A detailed appendix gives information on the testing of building materials.With its distinguished editor and eminent editorial committee, Building materials in civil engineering is a standard introductory reference book on the complete range of building materials. It is aimed at students of civil engineering, construction engineering and allied courses including water supply and drainage engineering. It also serves as a source of essential background information for engineers and professionals in the civil engineering and construction sector. - Provides an overview of the complete range of building materials available to civil engineers and all those involved in the building and construction industries - Explores the basic properties of building materials featuring air hardening cement materials, wall and roof materials and sound-absorbing materials - Each chapter includes a series of questions, allowing readers to test the knowledge they have gained
  data science for civil engineering: Machine Learning for Engineers Ryan G. McClarren, 2021-09-21 All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally “analog” disciplines—mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates their specific value to engineers by presenting concrete examples based on physical systems. The book proceeds from basic learning models to deep neural networks, gradually increasing readers’ ability to apply modern machine learning techniques to their current work and to prepare them for future, as yet unknown, problems. Rather than taking a black box approach, the author teaches a broad range of techniques while conveying the kinds of problems best addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow, demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally benefits undergraduate engineering students who wish to acquire the skills required by future employers, and practicing engineers who wish to expand and update their problem-solving toolkit.
  data science for civil engineering: Innovation in Construction Seyed Hamidreza Ghaffar, Paul Mullett, Eujin Pei, John Roberts, 2022-03-23 This book tackles the complex topic of implementing innovation and the successful application of advanced technology in the construction industry. It provides a practical guide for the transformation of the industry by detailing appropriate and effective implementation methods, required skill sets and structural changes necessary to facilitate the practical and innovative application of technology. The construction industry is behind other industries in its level of innovation and adoption of technology, and is of critical importance to many of today’s global challenges, such as climate change, global warming and resource scarcity. There is therefore a need for smarter and more efficient ways of managing available resources. This book elaborates on how the innovative application of technology could offer hope for the construction industry in it’s imperative to rise to current and future global challenges. It includes the real-world case studies of innovative projects that go beyond the current state-of-the-art academic research, and have improved productivity, quality and performance in the construction sector. This book provides readers from both industrial and academic backgrounds with a comprehensive guide on transforming the construction industry with the efficient and effective implementation of technologies and modern methods of construction.
  data science for civil engineering: New Materials in Civil Engineering Pijush Samui, Dookie Kim, Nagesh R. Iyer, Sandeep Chaudhary, 2020-07-07 New Materials in Civil Engineering provides engineers and scientists with the tools and methods needed to meet the challenge of designing and constructing more resilient and sustainable infrastructures. This book is a valuable guide to the properties, selection criteria, products, applications, lifecycle and recyclability of advanced materials. It presents an A-to-Z approach to all types of materials, highlighting their key performance properties, principal characteristics and applications. Traditional materials covered include concrete, soil, steel, timber, fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber and reinforced polymers. In addition, the book covers nanotechnology and biotechnology in the development of new materials. - Covers a variety of materials, including fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber reinforced polymer and waste materials - Provides a one-stop resource of information for the latest materials and practical applications - Includes a variety of different use case studies
  data science for civil engineering: Big Data Science and Analytics for Smart Sustainable Urbanism Simon Elias Bibri, 2019-05-30 We are living at the dawn of what has been termed ‘the fourth paradigm of science,’ a scientific revolution that is marked by both the emergence of big data science and analytics, and by the increasing adoption of the underlying technologies in scientific and scholarly research practices. Everything about science development or knowledge production is fundamentally changing thanks to the ever-increasing deluge of data. This is the primary fuel of the new age, which powerful computational processes or analytics algorithms are using to generate valuable knowledge for enhanced decision-making, and deep insights pertaining to a wide variety of practical uses and applications. This book addresses the complex interplay of the scientific, technological, and social dimensions of the city, and what it entails in terms of the systemic implications for smart sustainable urbanism. In concrete terms, it explores the interdisciplinary and transdisciplinary field of smart sustainable urbanism and the unprecedented paradigmatic shifts and practical advances it is undergoing in light of big data science and analytics. This new era of science and technology embodies an unprecedentedly transformative and constitutive power—manifested not only in the form of revolutionizing science and transforming knowledge, but also in advancing social practices, producing new discourses, catalyzing major shifts, and fostering societal transitions. Of particular relevance, it is instigating a massive change in the way both smart cities and sustainable cities are studied and understood, and in how they are planned, designed, operated, managed, and governed in the face of urbanization. This relates to what has been dubbed data-driven smart sustainable urbanism, an emerging approach based on a computational understanding of city systems and processes that reduces urban life to logical and algorithmic rules and procedures, while also harnessing urban big data to provide a more holistic and integrated view or synoptic intelligence of the city. This is increasingly being directed towards improving, advancing, and maintaining the contribution of both sustainable cities and smart cities to the goals of sustainable development. This timely and multifaceted book is aimed at a broad readership. As such, it will appeal to urban scientists, data scientists, urbanists, planners, engineers, designers, policymakers, philosophers of science, and futurists, as well as all readers interested in an overview of the pivotal role of big data science and analytics in advancing every academic discipline and social practice concerned with data–intensive science and its application, particularly in relation to sustainability.
  data science for civil engineering: Proceedings of Workshop on Interdisciplinary Sciences 2023 Ton Viet Ta,
  data science for civil engineering: Data Analytics in Biomedical Engineering and Healthcare Kun Chang Lee, Sanjiban Sekhar Roy, Pijush Samui, Vijay Kumar, 2020-10-18 Data Analytics in Biomedical Engineering and Healthcare explores key applications using data analytics, machine learning, and deep learning in health sciences and biomedical data. The book is useful for those working with big data analytics in biomedical research, medical industries, and medical research scientists. The book covers health analytics, data science, and machine and deep learning applications for biomedical data, covering areas such as predictive health analysis, electronic health records, medical image analysis, computational drug discovery, and genome structure prediction using predictive modeling. Case studies demonstrate big data applications in healthcare using the MapReduce and Hadoop frameworks. - Examines the development and application of data analytics applications in biomedical data - Presents innovative classification and regression models for predicting various diseases - Discusses genome structure prediction using predictive modeling - Shows readers how to develop clinical decision support systems - Shows researchers and specialists how to use hybrid learning for better medical diagnosis, including case studies of healthcare applications using the MapReduce and Hadoop frameworks
  data science for civil engineering: Principles of Strategic Data Science Dr Peter Prevos, 2019-06-03 Take the strategic and systematic approach to analyze data to solve business problems Key FeaturesGain detailed information about the theory of data scienceAugment your coding knowledge with practical data science techniques for efficient data analysis Learn practical ways to strategically and systematically use dataBook Description Principles of Strategic Data Science is created to help you join the dots between mathematics, programming, and business analysis. With a unique approach that bridges the gap between mathematics and computer science, this book takes you through the entire data science pipeline. The book begins by explaining what data science is and how organizations can use it to revolutionize the way they use their data. It then discusses the criteria for the soundness of data products and how to best visualize information. As you progress, you’ll discover the strategic aspects of data science by learning the five-phase framework that enables you to enhance the value you extract from data. The final chapter of the book discusses the role of a data science manager in helping an organization take the data-driven approach. By the end of this book, you’ll have a good understanding of data science and how it can enable you to extract value from your data. What you will learnGet familiar with the five most important steps of data scienceUse the Conway diagram to visualize the technical skills of the data science teamUnderstand the limitations of data science from a mathematical and ethical perspectiveGet a quick overview of machine learningGain insight into the purpose of using data science in your workUnderstand the role of data science managers and their expectationsWho this book is for This book is ideal for data scientists and data analysts who are looking for a practical guide to strategically and systematically use data. This book is also useful for those who want to understand in detail what is data science and how can an organization take the data-driven approach. Prior programming knowledge of Python and R is assumed.
  data science for civil engineering: Civil Engineering Materials Peter A. Claisse, 2015-09-03 Civil Engineering Materials explains why construction materials behave the way they do. It covers the construction materials content for undergraduate courses in civil engineering and related subjects and serves as a valuable reference for professionals working in the construction industry. The book concentrates on demonstrating methods to obtain, analyse and use information rather than focusing on presenting large amounts of data. Beginning with basic properties of materials, it moves on to more complex areas such as the theory of concrete durability and corrosion of steel. - Discusses the broad scope of traditional, emerging, and non-structural materials - Explains what material properties such as specific heat, thermal conductivity and electrical resistivity are and how they can be used to calculate the performance of construction materials. - Contains numerous worked examples with detailed solutions that provide precise references to the relevant equations in the text. - Includes a detailed section on how to write reports as well as a full section on how to use and interpret publications, giving students and early career professionals valuable practical guidance.
  data science for civil engineering: Artificial Intelligence in Construction Engineering and Management Limao Zhang, Yue Pan, Xianguo Wu, Mirosław J. Skibniewski, 2021-06-18 This book highlights the latest technologies and applications of Artificial Intelligence (AI) in the domain of construction engineering and management. The construction industry worldwide has been a late bloomer to adopting digital technology, where construction projects are predominantly managed with a heavy reliance on the knowledge and experience of construction professionals. AI works by combining large amounts of data with fast, iterative processing, and intelligent algorithms (e.g., neural networks, process mining, and deep learning), allowing the computer to learn automatically from patterns or features in the data. It provides a wide range of solutions to address many challenging construction problems, such as knowledge discovery, risk estimates, root cause analysis, damage assessment and prediction, and defect detection. A tremendous transformation has taken place in the past years with the emerging applications of AI. This enables industrial participants to operate projects more efficiently and safely, not only increasing the automation and productivity in construction but also enhancing the competitiveness globally.
  data science for civil engineering: Data Science for Undergraduates National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Computer Science and Telecommunications Board, Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective, 2018-11-11 Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.
  data science for civil engineering: A Hands-On Introduction to Data Science Chirag Shah, 2020-04-02 An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.
  data science for civil engineering: Will the Civil Engineer Chadd Kahlsdorf, 2020-09-29 Follow along as Will learns about how everything that is built has an engineer and how he can be one, too! Part of a STEAM career-themed picture book series.
  data science for civil engineering: Big Data Analytics and Intelligent Techniques for Smart Cities Kolla Bhanu Prakash, Janmenjoy Nayak, B Madhhav, Sanjeevikumar Padmanaban, Valentina Emilia Balas, 2021-09-20 Big Data Analytics and Intelligent Techniques for Smart Cities covers fundamentals, advanced concepts, and applications of big data analytics for smart cities in a single volume. This comprehensive reference text discusses big data theory modeling and simulation for smart cities and examines case studies in a single volume. The text discusses how to develop a smart city and state-of-the-art system design, system verification, real-time control and adaptation, Internet of Things, and testbeds. It covers applications of smart cities as they relate to smart transportation/connected vehicle (CV) and intelligent transportation systems (ITS) for improved mobility, safety, and environmental protection. It will be useful as a reference text for graduate students in different areas including electrical engineering, computer science engineering, civil engineering, and electronics and communications engineering. Features: Technologies and algorithms associated with the application of big data for smart cities Discussions on big data theory modeling and simulation for smart cities Applications of smart cities as they relate to smart transportation and intelligent transportation systems (ITS) Discussions on concepts including smart education, smart culture, and smart transformation management for social and societal changes
  data science for civil engineering: Data Science in Engineering, Volume 9 Ramin Madarshahian, Francois Hemez, 2021-10-04 Data Science and Engineering Volume 9: Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics, 2021, the ninth volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on: Data Science in Engineering Applications Engineering Mathematics Computational Methods in Engineering
  data science for civil engineering: Civil and Environmental Engineering Information Resources Management Association, 2016 This is a comprehensive multi-volume publication showcasing the best research on topics pertaining to road design, building maintenance and construction, transportation, earthquake engineering, waste and pollution management, and water resources management and engineering. It offers extensive coverage of crucial concepts in the field of civil engineering and environmental engineering.
  data science for civil engineering: Experimental Vibration Analysis for Civil Structures Jian Zhang, Zhishen Wu, Mohammad Noori, Yong Li, 2020-11-04 Experimental Vibration Analysis for Civil Structures: Testing, Sensing, Monitoring, and Control covers a wide range of topics in the areas of vibration testing, instrumentation, and analysis of civil engineering and critical infrastructure. It explains how recent research, development, and applications in experimental vibration analysis of civil engineering structures have progressed significantly due to advancements in the fields of sensor and testing technologies, instrumentation, data acquisition systems, computer technology, computational modeling and simulation of large and complex civil infrastructure systems. The book also examines how cutting-edge artificial intelligence and data analytics can be applied to infrastructure systems. Features: Explains how recent technological developments have resulted in addressing the challenge of designing more resilient infrastructure Examines numerous research studies conducted by leading scholars in the field of infrastructure systems and civil engineering Presents the most emergent fields of civil engineering design, such as data analytics and Artificial Intelligence for the analysis and performance assessment of infrastructure systems and their resilience Emphasizes the importance of an interdisciplinary approach to develop the modeling, analysis, and experimental tools for designing more resilient and intelligent infrastructures Appropriate for practicing engineers and upper-level students, Experimental Vibration Analysis for Civil Structures: Testing, Sensing, Monitoring, and Control serves as a strategic roadmap for further research in the field of vibration testing and instrumentation of infrastructure systems.
  data science for civil engineering: Data Science Carlos Alberto De Bragança Pereira, Adriano Polpo, Agatha Rodrigues, 2021-09-02 With the increase in data processing and storage capacity, a large amount of data is available. Data without analysis does not have much value. Thus, the demand for data analysis is increasing daily, and the consequence is the appearance of a large number of jobs and published articles. Data science has emerged as a multidisciplinary field to support data-driven activities, integrating and developing ideas, methods, and processes to extract information from data. This includes methods built from different knowledge areas: Statistics, Computer Science, Mathematics, Physics, Information Science, and Engineering. This mixture of areas has given rise to what we call Data Science. New solutions to the new problems are reproducing rapidly to generate large volumes of data. Current and future challenges require greater care in creating new solutions that satisfy the rationality for each type of problem. Labels such as Big Data, Data Science, Machine Learning, Statistical Learning, and Artificial Intelligence are demanding more sophistication in the foundations and how they are being applied. This point highlights the importance of building the foundations of Data Science. This book is dedicated to solutions and discussions of measuring uncertainties in data analysis problems.
  data science for civil engineering: Supervised and Unsupervised Learning for Data Science Michael W. Berry, Azlinah Mohamed, Bee Wah Yap, 2019-09-04 This book covers the state of the art in learning algorithms with an inclusion of semi-supervised methods to provide a broad scope of clustering and classification solutions for big data applications. Case studies and best practices are included along with theoretical models of learning for a comprehensive reference to the field. The book is organized into eight chapters that cover the following topics: discretization, feature extraction and selection, classification, clustering, topic modeling, graph analysis and applications. Practitioners and graduate students can use the volume as an important reference for their current and future research and faculty will find the volume useful for assignments in presenting current approaches to unsupervised and semi-supervised learning in graduate-level seminar courses. The book is based on selected, expanded papers from the Fourth International Conference on Soft Computing in Data Science (2018). Includes new advances in clustering and classification using semi-supervised and unsupervised learning; Address new challenges arising in feature extraction and selection using semi-supervised and unsupervised learning; Features applications from healthcare, engineering, and text/social media mining that exploit techniques from semi-supervised and unsupervised learning.
  data science for civil engineering: Revolutionizing Civil Engineering with Neuromorphic Computing Ali Akbar Firoozi,
  data science for civil engineering: Data Science in Engineering Vol. 10 Thomas Matarazzo,
  data science for civil engineering: Risk, Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering Thendiyath Roshni, Pijush Samui, Dieu Tien Bui, Dookie Kim, Rahman Khatibi, 2022-03-22 Risk, Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering illustrates the concepts of risk, reliability analysis, its estimation, and the decisions leading to sustainable development in the field of civil and environmental engineering. The book provides key ideas on risks in performance failure and structural failures of all processes involved in civil and environmental systems, evaluates reliability, and discusses the implications of measurable indicators of sustainability in important aspects of multitude of civil engineering projects. It will help practitioners become familiar with tolerances in design parameters, uncertainties in the environment, and applications in civil and environmental systems. Furthermore, the book emphasizes the importance of risks involved in design and planning stages and covers reliability techniques to discover and remove the potential failures to achieve a sustainable development. - Contains relevant theory and practice related to risk, reliability and sustainability in the field of civil and environment engineering - Gives firsthand experience of new tools to integrate existing artificial intelligence models with large information obtained from different sources - Provides engineering solutions that have a positive impact on sustainability
  data science for civil engineering: Artificial Intelligence and Data Science in Environmental Sensing Mohsen Asadnia, Amir Razmjou, Amin Beheshti, 2022-02-09 Artificial Intelligence and Data Science in Environmental Sensing provides state-of-the-art information on the inexpensive mass-produced sensors that are used as inputs to artificial intelligence systems. The book discusses the advances of AI and Machine Learning technologies in material design for environmental areas. It is an excellent resource for researchers and professionals who work in the field of data processing, artificial intelligence sensors and environmental applications. - Presents tools, connections and proactive solutions to take sustainability programs to the next level - Offers a practical guide for making students proficient in modern electronic data analysis and graphics - Provides knowledge and background to develop specific platforms related to environmental sensing, including control water, air and soil quality, water and wastewater treatment, desalination, pollution mitigation/control, and resource management and recovery
  data science for civil engineering: Doing Data Science Cathy O'Neil, Rachel Schutt, 2013-10-09 Now that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know. In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. Topics include: Statistical inference, exploratory data analysis, and the data science process Algorithms Spam filters, Naive Bayes, and data wrangling Logistic regression Financial modeling Recommendation engines and causality Data visualization Social networks and data journalism Data engineering, MapReduce, Pregel, and Hadoop Doing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open …

Belmont Forum Adopts Open Data Principles for Environme…
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data …

Belmont Forum Data Accessibility Statement an…
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. …

Data and Digital Outputs Management Plan (DDOMP)
Data and Digital Outputs Management Plan (DDOMP)

Building New Tools for Data Sharing and Reuse through a …
Jan 10, 2019 · The SEI CRA will closely link research thinking and technological innovation toward accelerating the full path of discovery-driven data use and open science. This will enable a …

Open Data Policy and Principles - Belmont Forum
The data policy includes the following principles: Data should be: Discoverable through catalogues and search engines; Accessible as open data by default, and made available with minimum time …

Belmont Forum Adopts Open Data Principles for Environmental …
Jan 27, 2016 · Adoption of the open data policy and principles is one of five recommendations in A Place to Stand: e-Infrastructures and Data Management for Global Change Research, released in …

Belmont Forum Data Accessibility Statement and Policy
The DAS encourages researchers to plan for the longevity, reusability, and stability of the data attached to their research publications and results. Access to data promotes reproducibility, …

Climate-Induced Migration in Africa and Beyond: Big Data and …
CLIMB will also leverage earth observation and social media data, and combine them with survey and official statistical data. This holistic approach will allow us to analyze migration process from …

Advancing Resilience in Low Income Housing Using Climate …
Jun 4, 2020 · Environmental sustainability and public health considerations will be included. Machine Learning and Big Data Analytics will be used to identify optimal disaster resilient …

Belmont Forum
What is the Belmont Forum? The Belmont Forum is an international partnership that mobilizes funding of environmental change research and accelerates its delivery to remove critical barriers …

Waterproofing Data: Engaging Stakeholders in Sustainable Flood …
Apr 26, 2018 · Waterproofing Data investigates the governance of water-related risks, with a focus on social and cultural aspects of data practices. Typically, data flows up from local levels to …

Data Management Annex (Version 1.4) - Belmont Forum
A full Data Management Plan (DMP) for an awarded Belmont Forum CRA project is a living, actively updated document that describes the data management life cycle for the data to be collected, …