Advertisement
data science pricing model: Pricing Analytics Walter R. Paczkowski, 2018-06-27 The theme of this book is simple. The price – the number someone puts on a product to help consumers decide to buy that product – comes from data. Specifically, itcomes from statistically modeling the data. This book gives the reader the statistical modeling tools needed to get the number to put on a product. But statistical modeling is not done in a vacuum. Economic and statistical principles and theory conjointly provide the background and framework for the models. Therefore, this book emphasizes two interlocking components of modeling: economic theory and statistical principles. The economic theory component is sufficient to provide understanding of the basic principles for pricing, especially about elasticities, which measure the effects of pricing on key business metrics. Elasticity estimation is the goal of statistical modeling, so attention is paid to the concept and implications of elasticities. The statistical modeling component is advanced and detailed covering choice (conjoint, discrete choice, MaxDiff) and sales data modeling. Experimental design principles, model estimation approaches, and analysis methods are discussed and developed for choice models. Regression fundamentals have been developed for sales model specification and estimation and expanded for latent class analysis. |
data science pricing model: Machine Learning and Data Science Blueprints for Finance Hariom Tatsat, Sahil Puri, Brad Lookabaugh, 2020-10-01 Over the next few decades, machine learning and data science will transform the finance industry. With this practical book, analysts, traders, researchers, and developers will learn how to build machine learning algorithms crucial to the industry. You’ll examine ML concepts and over 20 case studies in supervised, unsupervised, and reinforcement learning, along with natural language processing (NLP). Ideal for professionals working at hedge funds, investment and retail banks, and fintech firms, this book also delves deep into portfolio management, algorithmic trading, derivative pricing, fraud detection, asset price prediction, sentiment analysis, and chatbot development. You’ll explore real-life problems faced by practitioners and learn scientifically sound solutions supported by code and examples. This book covers: Supervised learning regression-based models for trading strategies, derivative pricing, and portfolio management Supervised learning classification-based models for credit default risk prediction, fraud detection, and trading strategies Dimensionality reduction techniques with case studies in portfolio management, trading strategy, and yield curve construction Algorithms and clustering techniques for finding similar objects, with case studies in trading strategies and portfolio management Reinforcement learning models and techniques used for building trading strategies, derivatives hedging, and portfolio management NLP techniques using Python libraries such as NLTK and scikit-learn for transforming text into meaningful representations |
data science pricing model: Revenue Management and Pricing Analytics Guillermo Gallego, Huseyin Topaloglu, 2019-08-14 “There is no strategic investment that has a higher return than investing in good pricing, and the text by Gallego and Topaloghu provides the best technical treatment of pricing strategy and tactics available.” Preston McAfee, the J. Stanley Johnson Professor, California Institute of Technology and Chief Economist and Corp VP, Microsoft. “The book by Gallego and Topaloglu provides a fresh, up-to-date and in depth treatment of revenue management and pricing. It fills an important gap as it covers not only traditional revenue management topics also new and important topics such as revenue management under customer choice as well as pricing under competition and online learning. The book can be used for different audiences that range from advanced undergraduate students to masters and PhD students. It provides an in-depth treatment covering recent state of the art topics in an interesting and innovative way. I highly recommend it. Professor Georgia Perakis, the William F. Pounds Professor of Operations Research and Operations Management at the Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts. “This book is an important and timely addition to the pricing analytics literature by two authors who have made major contributions to the field. It covers traditional revenue management as well as assortment optimization and dynamic pricing. The comprehensive treatment of choice models in each application is particularly welcome. It is mathematically rigorous but accessible to students at the advanced undergraduate or graduate levels with a rich set of exercises at the end of each chapter. This book is highly recommended for Masters or PhD level courses on the topic and is a necessity for researchers with an interest in the field.” Robert L. Phillips, Director of Pricing Research at Amazon “At last, a serious and comprehensive treatment of modern revenue management and assortment optimization integrated with choice modeling. In this book, Gallego and Topaloglu provide the underlying model derivations together with a wide range of applications and examples; all of these facets will better equip students for handling real-world problems. For mathematically inclined researchers and practitioners, it will doubtless prove to be thought-provoking and an invaluable reference.” Richard Ratliff, Research Scientist at Sabre “This book, written by two of the leading researchers in the area, brings together in one place most of the recent research on revenue management and pricing analytics. New industries (ride sharing, cloud computing, restaurants) and new developments in the airline and hotel industries make this book very timely and relevant, and will serve as a critical reference for researchers.” Professor Kalyan Talluri, the Munjal Chair in Global Business and Operations, Imperial College, London, UK. |
data science pricing model: The Decision Maker's Handbook to Data Science Stylianos Kampakis, 2019-11-26 Data science is expanding across industries at a rapid pace, and the companies first to adopt best practices will gain a significant advantage. To reap the benefits, decision makers need to have a confident understanding of data science and its application in their organization. It is easy for novices to the subject to feel paralyzed by intimidating buzzwords, but what many don’t realize is that data science is in fact quite multidisciplinary—useful in the hands of business analysts, communications strategists, designers, and more. With the second edition of The Decision Maker’s Handbook to Data Science, you will learn how to think like a veteran data scientist and approach solutions to business problems in an entirely new way. Author Stylianos Kampakis provides you with the expertise and tools required to develop a solid data strategy that is continuously effective. Ethics and legal issues surrounding data collection and algorithmic bias are some common pitfalls that Kampakis helps you avoid, while guiding you on the path to build a thriving data science culture at your organization. This updated and revised second edition, includes plenty of case studies, tools for project assessment, and expanded content for hiring and managing data scientists Data science is a language that everyone at a modern company should understand across departments. Friction in communication arises most often when management does not connect with what a data scientist is doing or how impactful data collection and storage can be for their organization. The Decision Maker’s Handbook to Data Science bridges this gap and readies you for both the present and future of your workplace in this engaging, comprehensive guide. What You Will Learn Understand how data science can be used within your business. Recognize the differences between AI, machine learning, and statistics.Become skilled at thinking like a data scientist, without being one.Discover how to hire and manage data scientists.Comprehend how to build the right environment in order to make your organization data-driven. Who This Book Is For Startup founders, product managers, higher level managers, and any other non-technical decision makers who are thinking to implement data science in their organization and hire data scientists. A secondary audience includes people looking for a soft introduction into the subject of data science. |
data science pricing model: Statistical Foundations of Data Science Jianqing Fan, Runze Li, Cun-Hui Zhang, Hui Zou, 2020-09-21 Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning. |
data science pricing model: The Pricing Model Revolution Danilo Zatta, 2022-04-25 An incisive and accessible blueprint to pricing your company’s products and services In The Pricing Model Revolution: How Pricing Will Change the Way We Sell and Buy On and Offline, world renowned pricing expert Danilo Zatta delivers an essential and engaging blueprint to building an enduring competitive advantage with insightful pricing models. In the book, you’ll learn to identify the best monetization approaches for your products and how to execute the one that makes the most sense for your business. From freemium to subscription, pay-per-use, and even neuropricing, the author discusses every available option and shows you how to choose. Although it's rigorous and evidence backed, The Pricing Model Revolution avoids an overly academic perspective in favour of providing you with concrete, practical guidance you can apply immediately to start generating more revenue. You’ll learn things like: How to make smart and innovative pricing a core component of your next product offering How to distinguish between every new, future-oriented monetization approach Which factors to consider when you’re choosing on a new pricing model for your most popular products An essential read for C-level executives, managers, entrepreneurs, and sales team leaders, The Pricing Model Revolution belongs on the bookshelves of every business leader seeking to learn more about one of the foundational topics driving top-line revenue and bottom-line profitability today. |
data science pricing model: Pricing and Revenue Optimization Robert Phillips, 2005-08-05 This is the first comprehensive introduction to the concepts, theories, and applications of pricing and revenue optimization. From the initial success of yield management in the commercial airline industry down to more recent successes of markdown management and dynamic pricing, the application of mathematical analysis to optimize pricing has become increasingly important across many different industries. But, since pricing and revenue optimization has involved the use of sophisticated mathematical techniques, the topic has remained largely inaccessible to students and the typical manager. With methods proven in the MBA courses taught by the author at Columbia and Stanford Business Schools, this book presents the basic concepts of pricing and revenue optimization in a form accessible to MBA students, MS students, and advanced undergraduates. In addition, managers will find the practical approach to the issue of pricing and revenue optimization invaluable. Solutions to the end-of-chapter exercises are available to instructors who are using this book in their courses. For access to the solutions manual, please contact marketing@www.sup.org. |
data science pricing model: Empirical Asset Pricing Wayne Ferson, 2019-03-12 An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals. |
data science pricing model: Non-Life Insurance Pricing with Generalized Linear Models Esbjörn Ohlsson, Björn Johansson, 2010-03-18 Non-life insurance pricing is the art of setting the price of an insurance policy, taking into consideration varoius properties of the insured object and the policy holder. Introduced by British actuaries generalized linear models (GLMs) have become today a the standard aproach for tariff analysis. The book focuses on methods based on GLMs that have been found useful in actuarial practice and provides a set of tools for a tariff analysis. Basic theory of GLMs in a tariff analysis setting is presented with useful extensions of standarde GLM theory that are not in common use. The book meets the European Core Syllabus for actuarial education and is written for actuarial students as well as practicing actuaries. To support reader real data of some complexity are provided at www.math.su.se/GLMbook. |
data science pricing model: Machine Learning in Asset Pricing Stefan Nagel, 2021-05-11 A groundbreaking, authoritative introduction to how machine learning can be applied to asset pricing Investors in financial markets are faced with an abundance of potentially value-relevant information from a wide variety of different sources. In such data-rich, high-dimensional environments, techniques from the rapidly advancing field of machine learning (ML) are well-suited for solving prediction problems. Accordingly, ML methods are quickly becoming part of the toolkit in asset pricing research and quantitative investing. In this book, Stefan Nagel examines the promises and challenges of ML applications in asset pricing. Asset pricing problems are substantially different from the settings for which ML tools were developed originally. To realize the potential of ML methods, they must be adapted for the specific conditions in asset pricing applications. Economic considerations, such as portfolio optimization, absence of near arbitrage, and investor learning can guide the selection and modification of ML tools. Beginning with a brief survey of basic supervised ML methods, Nagel then discusses the application of these techniques in empirical research in asset pricing and shows how they promise to advance the theoretical modeling of financial markets. Machine Learning in Asset Pricing presents the exciting possibilities of using cutting-edge methods in research on financial asset valuation. |
data science pricing model: Rethinking Valuation and Pricing Models Carsten Wehn, Christian Hoppe, Greg N. Gregoriou, 2012-11-08 It is widely acknowledged that many financial modelling techniques failed during the financial crisis, and in our post-crisis environment many techniques are being reconsidered. This single volume provides a guide to lessons learned for practitioners and a reference for academics. Including reviews of traditional approaches, real examples, and case studies, contributors consider portfolio theory; methods for valuing equities and equity derivatives, interest rate derivatives, and hybrid products; and techniques for calculating risks and implementing investment strategies. Describing new approaches without losing sight of their classical antecedents, this collection of original articles presents a timely perspective on our post-crisis paradigm. Highlights pre-crisis best classical practices, identifies post-crisis key issues, and examines emerging approaches to solving those issues Singles out key factors one must consider when valuing or calculating risks in the post-crisis environment Presents material in a homogenous, practical, clear, and not overly technical manner |
data science pricing model: Data Science and Network Engineering Suyel Namasudra, Munesh Chandra Trivedi, Ruben Gonzalez Crespo, Pascal Lorenz, 2023-11-02 This book includes research papers presented at the International Conference on Data Science and Network Engineering (ICDSNE 2023) organized by the Department of Computer Science and Engineering, National Institute of Technology Agartala, Tripura, India, during July 21–22, 2023. It includes research works from researchers, academicians, business executives, and industry professionals for solving real-life problems by using the advancements and applications of data science and network engineering. This book covers many advanced topics, such as artificial intelligence (AI), machine learning (ML), deep learning (DL), computer networks, blockchain, security and privacy, Internet of things (IoT), cloud computing, big data, supply chain management, and many more. Different sections of this book are highly beneficial for the researchers, who are working in the field of data science and network engineering. |
data science pricing model: Encyclopedia of Data Science and Machine Learning Wang, John, 2023-01-20 Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians. |
data science pricing model: Advances in Data Science and Information Engineering Robert Stahlbock, Gary M. Weiss, Mahmoud Abou-Nasr, Cheng-Ying Yang, Hamid R. Arabnia, Leonidas Deligiannidis, 2021-10-29 The book presents the proceedings of two conferences: the 16th International Conference on Data Science (ICDATA 2020) and the 19th International Conference on Information & Knowledge Engineering (IKE 2020), which took place in Las Vegas, NV, USA, July 27-30, 2020. The conferences are part of the larger 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE'20), which features 20 major tracks. Papers cover all aspects of Data Science, Data Mining, Machine Learning, Artificial and Computational Intelligence (ICDATA) and Information Retrieval Systems, Information & Knowledge Engineering, Management and Cyber-Learning (IKE). Authors include academics, researchers, professionals, and students. Presents the proceedings of the 16th International Conference on Data Science (ICDATA 2020) and the 19th International Conference on Information & Knowledge Engineering (IKE 2020); Includes papers on topics from data mining to machine learning to informational retrieval systems; Authors include academics, researchers, professionals and students. |
data science pricing model: Trends of Data Science and Applications Siddharth Swarup Rautaray, Phani Pemmaraju, Hrushikesha Mohanty, 2021-03-21 This book includes an extended version of selected papers presented at the 11th Industry Symposium 2021 held during January 7–10, 2021. The book covers contributions ranging from theoretical and foundation research, platforms, methods, applications, and tools in all areas. It provides theory and practices in the area of data science, which add a social, geographical, and temporal dimension to data science research. It also includes application-oriented papers that prepare and use data in discovery research. This book contains chapters from academia as well as practitioners on big data technologies, artificial intelligence, machine learning, deep learning, data representation and visualization, business analytics, healthcare analytics, bioinformatics, etc. This book is helpful for the students, practitioners, researchers as well as industry professional. |
data science pricing model: Data Science Qinglei Zhou, Yong Gan, Weipeng Jing, Xianhua Song, Yan Wang, Zeguang Lu, 2018-09-10 This two volume set (CCIS 901 and 902) constitutes the refereed proceedings of the 4th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2018 (originally ICYCSEE) held in Zhengzhou, China, in September 2018. The 125 revised full papers presented in these two volumes were carefully reviewed and selected from 1057 submissions. The papers cover a wide range of topics related to basic theory and techniques for data science including mathematical issues in data science, computational theory for data science, big data management and applications, data quality and data preparation, evaluation and measurement in data science, data visualization, big data mining and knowledge management, infrastructure for data science, machine learning for data science, data security and privacy, applications of data science, case study of data science, multimedia data management and analysis, data-driven scientific research, data-driven bioinformatics, data-driven healthcare, data-driven management, data-driven eGovernment, data-driven smart city/planet, data marketing and economics, social media and recommendation systems, data-driven security, data-driven business model innovation, social and/or organizational impacts of data science. |
data science pricing model: Data Science Xiaohui Cheng, Weipeng Jing, Xianhua Song, Zeguang Lu, 2019-09-13 This two volume set (CCIS 1058 and 1059) constitutes the refereed proceedings of the 5th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2019 held in Guilin, China, in September 2019. The 104 revised full papers presented in these two volumes were carefully reviewed and selected from 395 submissions. The papers cover a wide range of topics related to basic theory and techniques for data science including data mining; data base; net work; security; machine learning; bioinformatics; natural language processing; software engineering; graphic images; system; education; application. |
data science pricing model: The Ends Game Marco Bertini, Oded Koenigsberg, 2022-01-11 How companies like Dollar Shave Club and Rent the Runway rewrite the rules of commerce by pursuing outcomes rather than products and services. The seventh book in the Management on the Cutting Edge series—for business professionals looking to do deliver excellent customer service while maximizing value and revenue. Would you rather pay for healthcare or for better health? For school or education? For groceries or nutrition? A car or transportation? A theater performance or entertainment? In The Ends Game, Marco Bertini and Oded Koenigsberg describe how some firms are rewriting the rules of commerce: instead of selling the “means” (their products and services), they adopt innovative revenue models to pursue “ends” (actual outcomes). They examine companies such as: • Dollar Shave Club • Rent the Runway • Netflix • Spotify • Michelin • Adobe • Pearson • And many more! They show that paying by the pill, semester, food item, vehicle, or show does not necessarily reflect the value that customers actually derive from their purchases. Revenue models anchored on the ownership of products, they argue, are patently inferior. |
data science pricing model: Data Science and Big Data Analytics EMC Education Services, 2015-01-05 Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today! |
data science pricing model: Data Mining For Dummies Meta S. Brown, 2014-09-04 Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining. |
data science pricing model: Price Management Hermann Simon, Martin Fassnacht, 2018-12-11 In this book, the world’s foremost experts on pricing integrate theoretical rigor and practical application to present a comprehensive resource that covers all areas of the field. This volume brings together quantitative and qualitative approaches and highlights the most current innovations in theory and practice. Going beyond the traditional constraints of “price theory” and “price policy,” the authors coined the term “price management” to represent a holistic approach to pricing strategy and tactical implementation. They remind us that the Ancient Romans used one word, pretium, to mean both price and value. This is the fundamental philosophy that drives successful price management where producer and customer meet. Featuring dozens of examples and case studies drawn from their extensive research, consulting, and teaching around the world, Simon and Fassnacht cover all aspects of pricing following the price management process with its four phases: strategy, analysis, decision, and implementation. Thereby, the authors take into account the nuances across industry sectors, including consumer goods, industrial products, services, and trade/distribution. In particular, they address the implications of technological advancements, such as the Internet and new measurement and sensor technologies that have led to a wealth of price management innovations, such as flat rates, freemium, pay-per-use, or pay-what-you-want. They also address the emergence of new price metrics, Big Data applications, two-sided price systems, negative prices, and the sharing economy, as well as emerging payment systems such as bitcoin. The result is a “bible” for leaders who recognize that price is not only a means to drive profit in the short term, but a tool to generate sustained growth in shareholder value over the longer term, and a primer for researchers, instructors, and students alike. Praise for Price Management “This book is truly state of the art and the most comprehensive work in price management.” - Prof. Philip Kotler, Kellogg School of Management, Northwestern University “This very important book builds an outstanding bridge between science and practice.“ - Kasper Rorsted, CEO, Adidas “This book provides practical guidelines on value creation, communication and management, which is an imperative for businesses to survive in the coming era of uncertainty.” - Dr. Chang-Gyu Hwang, Chairman and CEO, KT Corporation (Korea Telecom) |
data science pricing model: Recent Advances in Next-Generation Data Science Henry Han (Computer scientist), 2024 This book constitutes the refereed proceedings of the Third Southwest Data Science Conference, on Recent advances in next-generation data science, SDSC 2024, held in Waco, TX, USA, in March 22, 2024. The 15 full papers presented were carefully reviewed and selected from 59 submissions. These papers focus on AI security in next-generation data science and address a range of challenges, from protecting sensitive data to mitigating adversarial threats. |
data science pricing model: Data Science and Risk Analytics in Finance and Insurance Tze Leung Lai, Haipeng Xing, 2024-10-02 This book presents statistics and data science methods for risk analytics in quantitative finance and insurance. Part I covers the background, financial models, and data analytical methods for market risk, credit risk, and operational risk in financial instruments, as well as models of risk premium and insolvency in insurance contracts. Part II provides an overview of machine learning (including supervised, unsupervised, and reinforcement learning), Monte Carlo simulation, and sequential analysis techniques for risk analytics. In Part III, the book offers a non-technical introduction to four key areas in financial technology: artificial intelligence, blockchain, cloud computing, and big data analytics. Key Features: Provides a comprehensive and in-depth overview of data science methods for financial and insurance risks. Unravels bandits, Markov decision processes, reinforcement learning, and their interconnections. Promotes sequential surveillance and predictive analytics for abrupt changes in risk factors. Introduces the ABCDs of FinTech: Artificial intelligence, blockchain, cloud computing, and big data analytics. Includes supplements and exercises to facilitate deeper comprehension. |
data science pricing model: Algorithmic Finance: A Companion To Data Science Christopher Hian-ann Ting, 2022-05-05 Why is data science a branch of science? Is data science just a catchy rebranding of statistics?Data science provides tools for statistical analysis and machine learning. But, as much as application problems without tools are lame, tools without application problems are vain. Through example after example, this book presents the algorithmic aspects of statistics and show how some of the tools are applied to answer questions of interest to finance.This book champions a fundamental principle of science — objective reproducibility of evidence independently by others. From a companion web site, readers can download many easy-to-understand Python programs and real-world data. Independently, readers can draw for themselves the figures in the book. Even so, readers are encouraged to run the statistical tests described as examples to verify their own results against what the book claims.This book covers some topics that are seldom discussed in other textbooks. They include the methods to adjust for dividend payment and stock splits, how to reproduce a stock market index such as Nikkei 225 index, and so on. By running the Python programs provided, readers can verify their results against the data published by free data resources such as Yahoo! finance. Though practical, this book provides detailed proofs of propositions such as why certain estimators are unbiased, how the ubiquitous normal distribution is derived from the first principles, and so on.This see-for-yourself textbook is essential to anyone who intends to learn the nuts and bots of data science, especially in the application domain of finance. Advanced readers may find the book helpful in its mathematical treatment. Practitioners may find some tips from the book on how an ETF is constructed, as well as some insights on a novel algorithmic framework for pair trading to generate statistical arbitrage. |
data science pricing model: Data Science in Context Alfred Z. Spector, Peter Norvig, Chris Wiggins, Jeannette M. Wing, 2022-10-20 Four leading experts convey the promise of data science and examine challenges in achieving its benefits and mitigating some harms. |
data science pricing model: Data Science on the Google Cloud Platform Valliappa Lakshmanan, 2017-12-12 Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You’ll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines |
data science pricing model: Recent Developments in Data Science and Business Analytics Madjid Tavana, Srikanta Patnaik, 2018-03-27 This edited volume is brought out from the contributions of the research papers presented in the International Conference on Data Science and Business Analytics (ICDSBA- 2017), which was held during September 23-25 2017 in ChangSha, China. As we all know, the field of data science and business analytics is emerging at the intersection of the fields of mathematics, statistics, operations research, information systems, computer science and engineering. Data science and business analytics is an interdisciplinary field about processes and systems to extract knowledge or insights from data. Data science and business analytics employ techniques and theories drawn from many fields including signal processing, probability models, machine learning, statistical learning, data mining, database, data engineering, pattern recognition, visualization, descriptive analytics, predictive analytics, prescriptive analytics, uncertainty modeling, big data, data warehousing, data compression, computer programming, business intelligence, computational intelligence, and high performance computing among others. The volume contains 55 contributions from diverse areas of Data Science and Business Analytics, which has been categorized into five sections, namely: i) Marketing and Supply Chain Analytics; ii) Logistics and Operations Analytics; iii) Financial Analytics. iv) Predictive Modeling and Data Analytics; v) Communications and Information Systems Analytics. The readers shall not only receive the theoretical knowledge about this upcoming area but also cutting edge applications of this domains. |
data science pricing model: Proceedings of International Conference on Data Science and Applications Mukesh Saraswat, Chandreyee Chowdhury, Chintan Kumar Mandal, Amir H. Gandomi, 2023-02-06 This book gathers outstanding papers presented at the International Conference on Data Science and Applications (ICDSA 2022), organized by Soft Computing Research Society (SCRS) and Jadavpur University, Kolkata, India, from 26 to 27 March 2022. It covers theoretical and empirical developments in various areas of big data analytics, big data technologies, decision tree learning, wireless communication, wireless sensor networking, bioinformatics and systems, artificial neural networks, deep learning, genetic algorithms, data mining, fuzzy logic, optimization algorithms, image processing, computational intelligence in civil engineering, and creative computing. |
data science pricing model: Data Engineering and Data Science Kukatlapalli Pradeep Kumar, Aynur Unal, Vinay Jha Pillai, Hari Murthy, M. Niranjanamurthy, 2023-10-03 DATA ENGINEERING and DATA SCIENCE Written and edited by one of the most prolific and well-known experts in the field and his team, this exciting new volume is the “one-stop shop” for the concepts and applications of data science and engineering for data scientists across many industries. The field of data science is incredibly broad, encompassing everything from cleaning data to deploying predictive models. However, it is rare for any single data scientist to be working across the spectrum day to day. Data scientists usually focus on a few areas and are complemented by a team of other scientists and analysts. Data engineering is also a broad field, but any individual data engineer doesn’t need to know the whole spectrum of skills. Data engineering is the aspect of data science that focuses on practical applications of data collection and analysis. For all the work that data scientists do to answer questions using large sets of information, there have to be mechanisms for collecting and validating that information. In this exciting new volume, the team of editors and contributors sketch the broad outlines of data engineering, then walk through more specific descriptions that illustrate specific data engineering roles. Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. This book brings together machine learning, engineering mathematics, and mathematical physics to integrate modeling and control of dynamical systems with modern methods in data science. It highlights many of the recent advances in scientific computing that enable data-driven methods to be applied to a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy. Whether for the veteran engineer or scientist working in the field or laboratory, or the student or academic, this is a must-have for any library. |
data science pricing model: Data Scientist Diploma (master's level) - City of London College of Economics - 6 months - 100% online / self-paced City of London College of Economics, Overview This diploma course covers all aspects you need to know to become a successful Data Scientist. Content - Getting Started with Data Science - Data Analytic Thinking - Business Problems and Data Science Solutions - Introduction to Predictive Modeling: From Correlation to Supervised Segmentation - Fitting a Model to Data - Overfitting and Its Avoidance - Similarity, Neighbors, and Clusters Decision Analytic Thinking I: What Is a Good Model? - Visualizing Model Performance - Evidence and Probabilities - Representing and Mining Text - Decision Analytic Thinking II: Toward Analytical Engineering - Other Data Science Tasks and Techniques - Data Science and Business Strategy - Machine Learning: Learning from Data with Your Machine. - And much more Duration 6 months Assessment The assessment will take place on the basis of one assignment at the end of the course. Tell us when you feel ready to take the exam and we’ll send you the assignment questions. Study material The study material will be provided in separate files by email / download link. |
data science pricing model: Data Science Secrets Jay Samson, 2019-09-01 Data Science Secrets is the #1 strategy guide to break into the field of data and get hired as a Data Scientist, Data Analyst, or Data Engineer. This was created by a group of top Data Scientists and Data Hiring Managers in Silicon Valley to share the secrets of landing your dream job. Here's what's included: Top Interview Questions from companies like Google, Facebook, Amazon, Airbnb, and many more, plus detailed sections on how to answer the questions effectively and get hired. The 8 Week Strategy to find your dream job: learn how to get interviews with your top companies, and more importantly- succeed and get an incredible job offer. Online Learning Breakdown: we go deep into the pros and cons of the online learning options to help you find the right platform for youIn-depth explanations of data roles. There are literally hundreds of different roles and job titles in the world of data- how do you know which is right for you? This section will help you understand how to pursue the role that is the best fit for you |
data science pricing model: Hands-On Data Science with Anaconda Yuxing Yan, James Yan, 2018-05-31 Develop, deploy, and streamline your data science projects with the most popular end-to-end platform, Anaconda Key Features -Use Anaconda to find solutions for clustering, classification, and linear regression -Analyze your data efficiently with the most powerful data science stack -Use the Anaconda cloud to store, share, and discover projects and libraries Book Description Anaconda is an open source platform that brings together the best tools for data science professionals with more than 100 popular packages supporting Python, Scala, and R languages. Hands-On Data Science with Anaconda gets you started with Anaconda and demonstrates how you can use it to perform data science operations in the real world. The book begins with setting up the environment for Anaconda platform in order to make it accessible for tools and frameworks such as Jupyter, pandas, matplotlib, Python, R, Julia, and more. You’ll walk through package manager Conda, through which you can automatically manage all packages including cross-language dependencies, and work across Linux, macOS, and Windows. You’ll explore all the essentials of data science and linear algebra to perform data science tasks using packages such as SciPy, contrastive, scikit-learn, Rattle, and Rmixmod. Once you’re accustomed to all this, you’ll start with operations in data science such as cleaning, sorting, and data classification. You’ll move on to learning how to perform tasks such as clustering, regression, prediction, and building machine learning models and optimizing them. In addition to this, you’ll learn how to visualize data using the packages available for Julia, Python, and R. What you will learn Perform cleaning, sorting, classification, clustering, regression, and dataset modeling using Anaconda Use the package manager conda and discover, install, and use functionally efficient and scalable packages Get comfortable with heterogeneous data exploration using multiple languages within a project Perform distributed computing and use Anaconda Accelerate to optimize computational powers Discover and share packages, notebooks, and environments, and use shared project drives on Anaconda Cloud Tackle advanced data prediction problems Who this book is for Hands-On Data Science with Anaconda is for you if you are a developer who is looking for the best tools in the market to perform data science. It’s also ideal for data analysts and data science professionals who want to improve the efficiency of their data science applications by using the best libraries in multiple languages. Basic programming knowledge with R or Python and introductory knowledge of linear algebra is expected. |
data science pricing model: Recent Advances in Data Science Henry Han, Tie Wei, Wenbin Liu, Fei Han, 2020-09-28 This book constitutes selected papers of the Third International Conference on Data Science, Medicine and Bioinformatics, IDMB 2019, held in Nanning, China, in June 2019. The 19 full papers and 1 short paper were carefully reviewed and selected from 93 submissions. The papers are organized according to the following topical sections: business data science: fintech, management, and analytics.- health and biological data science.- novel data science theory and applications. |
data science pricing model: The Data Science Framework Juan J. Cuadrado-Gallego, Yuri Demchenko, 2020-10-01 This edited book first consolidates the results of the EU-funded EDISON project (Education for Data Intensive Science to Open New science frontiers), which developed training material and information to assist educators, trainers, employers, and research infrastructure managers in identifying, recruiting and inspiring the data science professionals of the future. It then deepens the presentation of the information and knowledge gained to allow for easier assimilation by the reader. The contributed chapters are presented in sequence, each chapter picking up from the end point of the previous one. After the initial book and project overview, the chapters present the relevant data science competencies and body of knowledge, the model curriculum required to teach the required foundations, profiles of professionals in this domain, and use cases and applications. The text is supported with appendices on related process models. The book can be used to develop new courses in data science, evaluate existing modules and courses, draft job descriptions, and plan and design efficient data-intensive research teams across scientific disciplines. |
data science pricing model: Big Data Science in Finance Irene Aldridge, Marco Avellaneda, 2021-01-27 Explains the mathematics, theory, and methods of Big Data as applied to finance and investing Data science has fundamentally changed Wall Street—applied mathematics and software code are increasingly driving finance and investment-decision tools. Big Data Science in Finance examines the mathematics, theory, and practical use of the revolutionary techniques that are transforming the industry. Designed for mathematically-advanced students and discerning financial practitioners alike, this energizing book presents new, cutting-edge content based on world-class research taught in the leading Financial Mathematics and Engineering programs in the world. Marco Avellaneda, a leader in quantitative finance, and quantitative methodology author Irene Aldridge help readers harness the power of Big Data. Comprehensive in scope, this book offers in-depth instruction on how to separate signal from noise, how to deal with missing data values, and how to utilize Big Data techniques in decision-making. Key topics include data clustering, data storage optimization, Big Data dynamics, Monte Carlo methods and their applications in Big Data analysis, and more. This valuable book: Provides a complete account of Big Data that includes proofs, step-by-step applications, and code samples Explains the difference between Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) Covers vital topics in the field in a clear, straightforward manner Compares, contrasts, and discusses Big Data and Small Data Includes Cornell University-tested educational materials such as lesson plans, end-of-chapter questions, and downloadable lecture slides Big Data Science in Finance: Mathematics and Applications is an important, up-to-date resource for students in economics, econometrics, finance, applied mathematics, industrial engineering, and business courses, and for investment managers, quantitative traders, risk and portfolio managers, and other financial practitioners. |
data science pricing model: E-Business. New Challenges and Opportunities for Digital-Enabled Intelligent Future Yiliu Paul Tu, |
data science pricing model: Innovations in Classification, Data Science, and Information Systems Daniel Baier, Klaus-Dieter Wernecke, 2006-06-06 The volume presents innovations in data analysis and classification and gives an overview of the state of the art in these scientific fields and applications. Areas that receive considerable attention in the book are discrimination and clustering, data analysis and statistics, as well as applications in marketing, finance, and medicine. The reader will find material on recent technical and methodological developments and a large number of applications demonstrating the usefulness of the newly developed techniques. |
data science pricing model: Microsoft Certified: Azure Data Scientist Associate (DP-100) Cybellium, Welcome to the forefront of knowledge with Cybellium, your trusted partner in mastering the cutting-edge fields of IT, Artificial Intelligence, Cyber Security, Business, Economics and Science. Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com |
data science pricing model: Practical Applications of Data Processing, Algorithms, and Modeling Whig, Pawan, Sharma, Sachinn, Sharma, Seema, Jain, Anupriya, Yathiraju, Nikhitha, 2024-04-29 In today's data-driven era, the persistent gap between theoretical understanding and practical implementation in data science poses a formidable challenge. As we navigate through the complexities of harnessing data, deciphering algorithms, and unleashing the potential of modeling techniques, the need for a comprehensive guide becomes increasingly evident. This is the landscape explored in Practical Applications of Data Processing, Algorithms, and Modeling. This book is a solution to the pervasive problem faced by aspiring data scientists, seasoned professionals, and anyone fascinated by the power of data-driven insights. From the web of algorithms to the strategic role of modeling in decision-making, this book is an effective resource in a landscape where data, without proper guidance, risks becoming an untapped resource. The objective of Practical Applications of Data Processing, Algorithms, and Modeling is to address the pressing issue at the heart of data science – the divide between theory and practice. This book seeks to examine the complexities of data processing techniques, algorithms, and modeling methodologies, offering a practical understanding of these concepts. By focusing on real-world applications, the book provides readers with the tools and knowledge needed to bridge the gap effectively, allowing them to apply these techniques across diverse industries and domains. In the face of constant technological advancements, the book highlights the latest trends and innovative approaches, fostering a deeper comprehension of how these technologies can be leveraged to solve complex problems. As a practical guide, it empowers readers with hands-on examples, case studies, and problem-solving scenarios, aiming to instill confidence in navigating data challenges and making informed decisions using data-driven insights. |
data science pricing model: Sports Analytics and Data Science Thomas W. Miller, 2015-11-18 This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. This up-to-the-minute reference will help you master all three facets of sports analytics — and use it to win! Sports Analytics and Data Science is the most accessible and practical guide to sports analytics for everyone who cares about winning and everyone who is interested in data science. You’ll discover how successful sports analytics blends business and sports savvy, modern information technology, and sophisticated modeling techniques. You’ll master the discipline through realistic sports vignettes and intuitive data visualizations–not complex math. Every chapter focuses on one key sports analytics application. Miller guides you through assessing players and teams, predicting scores and making game-day decisions, crafting brands and marketing messages, increasing revenue and profitability, and much more. Step by step, you’ll learn how analysts transform raw data and analytical models into wins: both on the field and in any sports business. |
A Pricing Model for Data Markets - University of Illinois …
In this paper, we describe a potential dataset valuation model and the impact such a model could have on data markets. We also explore how the model would influence certain practices, such …
Data Science in a pricing process - Volada
• use appropriate data, sophisticated and best practice pricing models; • have well documented and transparent pricing processes in place. Currently, GLM models are commonly used by …
A Survey on Data Pricing: from Economics to Data Science
data pricing, understand the economics of data pricing and review the development and evolution of pricing models according to a series of fundamental principles.
data pricing KDD - cs.sfu.ca
Data Pricing From Economics to Data Science. Jian Pei jpei@cs.sfu.ca. Outline. •Introduction •Economics of data pricing •Fundamental principles of data pricing •Pricing digital products …
A Survey on Data Pricing: Methods, Challenges, and …
survey of big data pricing methods from a data science perspective. It begins by providing an overview of the fundamental concepts underlying data pricing and the data market. …
Research on Pricing of Data Based on Bi-level Programming …
Based on the characteristics of data market, like truthfulness, revenue maximization, version control, fairness and non-arbitrage, we propose a data pricing methods based on different …
A Survey on Data Pricing: from Economics to Data Science
Jun 1, 2021 · We examine various motivations behind data pricing, understand the economics of data pricing and review the devel-opment and evolution of pricing models according to a series …
Data Science for Strategic Pricing - University of Washington
At the end of the course you’ll be able to perform supervised and unsupervised machine learning techniques in R with special attention paid to pricing and causal inference. The course is …
Pricing Analytics The three-minute guide - Deloitte United …
Analytics is crucial for understanding pricing and profit drivers, developing segmentation strategies, making the best use of price, and test driving scenarios. 1. Source: Getting pricing …
DataPrice: An Interactive System for Pricing Datasets in Data …
DataPrice develops an innovative system for participants in data marketplaces to determine the appropriate price of a dataset based on metadata that is considered critical in influencing data …
A Mosaic Data Science Case Study
This tool can enable the customer to streamline their pricing process, making better weekly pricing decisions across their seasonal product catalog with less overall effort. Want to learn more?
Pricing Recommendation by Applying Statistical Modeling …
There exists more than one type of Dynamic Pricing strategies, in this thesis we will describe the most popular ones: Pricing based on value or elasticity, Pricing based on competitors, and …
A Pricing Model for Big Personal Data - SciOpen
Data quality is completely observable and known to all participants in the data market. This paper proposes a pricing model of positive grading and reverse pricing for Big Personal Data based …
Data pricing strategy based on data quality - آی اس آی دانلود
We designed a multi-version data strategy and propose a data-pricing bi-level programming model based on the data quality to maximize the profit by the owner of the data platform and …
Machine Learning Methods to Perform Pricing Optimization: …
Actuarial rate-making, current policyholder retention modeling, and prospective policyholder conversion probabilities modeling all aim at so-called pricing optimization (PO).
A Survey on Data Pricing: from Economics to Data Science
We examine various motivations behind data pricing, understand the economics of data pricing and review the develop-ment and evolution of pricing models according to a series of …
PRICE OPTIMIZATION for MAJOR CLEARANCE SALES
In response, Mosaic built a multi-phased model that not only predicts demand at the item level, but also optimizes the pricing mix while accounting for potentially limiting elements like …
An AI Approach for Consumer Lending Approval & Pricing
Pricing Model Those funding requests that are approved by the Lending Model have their deal terms set by the Pricing Model to create loan offers. The Pricing Model is possibly a set of …
Data Quality, Product Characteristics, and Product Data …
In this study, we delve into a novel type of data product, product data, and aim to construct a profit-maximizing pricing model.
A Pricing Model for Data Markets - University of Illinois …
In this paper, we describe a potential dataset valuation model and the impact such a model could have on data markets. We also explore how the model would influence certain practices, such …
Data Science in a pricing process - Volada
• use appropriate data, sophisticated and best practice pricing models; • have well documented and transparent pricing processes in place. Currently, GLM models are commonly used by …
A Survey on Data Pricing: from Economics to Data Science
data pricing, understand the economics of data pricing and review the development and evolution of pricing models according to a series of fundamental principles.
data pricing KDD - cs.sfu.ca
Data Pricing From Economics to Data Science. Jian Pei jpei@cs.sfu.ca. Outline. •Introduction •Economics of data pricing •Fundamental principles of data pricing •Pricing digital products …
Pricing for Data Markets - University of Washington
While some of the datasets are avail-able for free, most of the proprietary datasets follow a multi-step pricing model that vary on the limit of transactions al-lowed per month. The data providers …
A Survey on Data Pricing: Methods, Challenges, and …
survey of big data pricing methods from a data science perspective. It begins by providing an overview of the fundamental concepts underlying data pricing and the data market. …
Research on Pricing of Data Based on Bi-level Programming …
Based on the characteristics of data market, like truthfulness, revenue maximization, version control, fairness and non-arbitrage, we propose a data pricing methods based on different …
A Survey on Data Pricing: from Economics to Data Science
Jun 1, 2021 · We examine various motivations behind data pricing, understand the economics of data pricing and review the devel-opment and evolution of pricing models according to a series …
Data Science for Strategic Pricing - University of Washington
At the end of the course you’ll be able to perform supervised and unsupervised machine learning techniques in R with special attention paid to pricing and causal inference. The course is …
Pricing Analytics The three-minute guide - Deloitte United …
Analytics is crucial for understanding pricing and profit drivers, developing segmentation strategies, making the best use of price, and test driving scenarios. 1. Source: Getting pricing …
DataPrice: An Interactive System for Pricing Datasets in Data …
DataPrice develops an innovative system for participants in data marketplaces to determine the appropriate price of a dataset based on metadata that is considered critical in influencing data …
A Mosaic Data Science Case Study
This tool can enable the customer to streamline their pricing process, making better weekly pricing decisions across their seasonal product catalog with less overall effort. Want to learn more?
Pricing Recommendation by Applying Statistical Modeling …
There exists more than one type of Dynamic Pricing strategies, in this thesis we will describe the most popular ones: Pricing based on value or elasticity, Pricing based on competitors, and …
A Pricing Model for Big Personal Data - SciOpen
Data quality is completely observable and known to all participants in the data market. This paper proposes a pricing model of positive grading and reverse pricing for Big Personal Data based …
Data pricing strategy based on data quality - آی اس آی دانلود
We designed a multi-version data strategy and propose a data-pricing bi-level programming model based on the data quality to maximize the profit by the owner of the data platform and …
Machine Learning Methods to Perform Pricing …
Actuarial rate-making, current policyholder retention modeling, and prospective policyholder conversion probabilities modeling all aim at so-called pricing optimization (PO).
A Survey on Data Pricing: from Economics to Data Science
We examine various motivations behind data pricing, understand the economics of data pricing and review the develop-ment and evolution of pricing models according to a series of …
PRICE OPTIMIZATION for MAJOR CLEARANCE SALES
In response, Mosaic built a multi-phased model that not only predicts demand at the item level, but also optimizes the pricing mix while accounting for potentially limiting elements like …
An AI Approach for Consumer Lending Approval & Pricing
Pricing Model Those funding requests that are approved by the Lending Model have their deal terms set by the Pricing Model to create loan offers. The Pricing Model is possibly a set of …
Data Quality, Product Characteristics, and Product Data …
In this study, we delve into a novel type of data product, product data, and aim to construct a profit-maximizing pricing model.