charging station management system: Developing Charging Infrastructure and Technologies for Electric Vehicles Alam, Mohammad Saad, Pillai, Reji Kumar, Murugesan, N., 2021-12-31 The increase in air pollution and vehicular emissions has led to the development of the renewable energy-based generation and electrification of transportation. Further, the electrification shift faces an enormous challenge due to limited driving range, long charging time, and high initial cost of deployment. Firstly, there has been a discussion on renewable energy such as how wind power and solar power can be generated by wind turbines and photovoltaics, respectively, while these are intermittent in nature. The combination of these renewable energy resources with available power generation system will make electric vehicle (EV) charging sustainable and viable after the payback period. Recently, there has also been a significant discussion focused on various EV charging types and the level of power for charging to minimize the charging time. By focusing on both sustainable and renewable energy, as well as charging infrastructures and technologies, the future for EV can be explored. Developing Charging Infrastructure and Technologies for Electric Vehicles reviews and discusses the state of the art in electric vehicle charging technologies, their applications, economic, environmental, and social impact, and integration with renewable energy. This book captures the state of the art in electric vehicle charging infrastructure deployment, their applications, architectures, and relevant technologies. In addition, this book identifies potential research directions and technologies that facilitate insights on EV charging in various charging places such as smart home charging, parking EV charging, and charging stations. This book will be essential for power system architects, mechanics, electrical engineers, practitioners, developers, practitioners, researchers, academicians, and students interested in the problems and solutions to the state-of-the-art status of electric vehicles. |
charging station management system: Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) Technologies Sekyung Han, Moses Amoasi Acquah, 2021-03-16 This Special Issue “Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) Technologies” was in session from 1 May 2019 to 31 May 2020. For this Special issue, we invited articles on current state-of-the-art technologies and solutions in G2V and V2G, including but not limited to the operation and control of gridable vehicles, energy storage and management systems, charging infrastructure and chargers, EV demand and load forecasting, V2G interfaces and applications, V2G and energy reliability and security, environmental impacts, and economic benefits as well as demonstration projects and case studies in the aforementioned areas. Articles that deal with the latest hot topics in V2G are of particular interest, such as V2G and demand-side response control technique, smart charging infrastructure and grid planning, advanced power electronics for V2G systems, adaptation of V2G systems in the smart grid, adaptation of smart cities for a large number of EVs, integration, and the optimization of V2G systems, utilities and transportation assets for advanced V2G systems, wireless power transfer systems for advanced V2G systems, fault detection, maintenance and diagnostics in V2G processes, communications protocols for V2G systems, energy management system (EMS) in V2G systems, IoT for V2G systems, distributed energy and storage systems for V2G, transportation networks and V2G, energy management for V2G, smart charging/discharging stations for efficient V2G, environmental and socio-economic benefits and challenges of V2G systems, and building integrated V2G systems (BIV2G). Five manuscripts are published in this Special Issue, including “An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads” by Agyeman et al., “Where Will You Park? Predicting Vehicle Locations for Vehicle-to-Grid, An MPC Scheme with Enhanced Active Voltage Vector Region for V2G Inverter” by Shipman et al., “Electric Vehicles Energy Management with V2G/G2V Multifactor Optimization of Smart Grids” by Xia et al., and “A Review on Communication Standards and Charging Topologies of V2G and V2H Operation Strategies” by Savitti et al. |
charging station management system: 2019 IEEE Green Technologies Conference(GreenTech) IEEE Staff, 2019-04-03 The IEEE Green Technologies Conference provides an open forum for sharing research and development in areas of sustainable green technologies |
charging station management system: Electric Vehicles and the Future of Energy Efficient Transportation Subramaniam, Umashankar, Williamson, Sheldon S., Krishna S., Mohan, J. L., Febin Daya, 2021-04-16 The electric vehicle market has been gradually gaining prominence in the world due to the rise in pollution levels caused by traditional IC engine-based vehicles. The advantages of electric vehicles are multi-pronged in terms of cost, energy efficiency, and environmental impact. The running and maintenance cost are considerably less than traditional models. The harmful exhaust emissions are reduced, besides the greenhouse gas emissions, when the electric vehicle is supplied from a renewable energy source. However, apart from some Western nations, many developing and underdeveloped countries have yet to take up this initiative. This lack of enthusiasm has been primarily attributed to the capital investment required for charging infrastructure and the slow transition of energy generation from the fossil fuel to the renewable energy format. Currently, there are very few charging stations, and the construction of the same needs to be ramped up to supplement the growth of electric vehicles. Grid integration issues also crop up when the electric vehicle is used to either do supply addition to or draw power from the grid. These problems need to be fixed at all the levels to enhance the future of energy efficient transportation. Electric Vehicles and the Future of Energy Efficient Transportation explores the growth and adoption of electric vehicles for the purpose of sustainable transportation and presents a critical analysis in terms of the economics, technology, and environmental perspectives of electric vehicles. The chapters cover the benefits and limitations of electric vehicles, techno-economic feasibility of the technologies being developed, and the impact this has on society. Specific points of discussion include electric vehicle architecture, wireless power transfer, battery management, and renewable resources. This book is of interest for individuals in the automotive sector and allied industries, policymakers, practitioners, engineers, technicians, researchers, academicians, and students looking for updated information on the technology, economics, policy, and environmental aspects of electric vehicles. |
charging station management system: Intelligent Renewable Energy Systems Neeraj Priyadarshi, Akash Kumar Bhoi, Sanjeevikumar Padmanaban, S. Balamurugan, Jens Bo Holm-Nielsen, 2022-01-19 INTELLIGENT RENEWABLE ENERGY SYSTEMS This collection of papers on artificial intelligence and other methods for improving renewable energy systems, written by industry experts, is a reflection of the state of the art, a must-have for engineers, maintenance personnel, students, and anyone else wanting to stay abreast with current energy systems concepts and technology. Renewable energy is one of the most important subjects being studied, researched, and advanced in today’s world. From a macro level, like the stabilization of the entire world’s economy, to the micro level, like how you are going to heat or cool your home tonight, energy, specifically renewable energy, is on the forefront of the discussion. This book illustrates modelling, simulation, design and control of renewable energy systems employed with recent artificial intelligence (AI) and optimization techniques for performance enhancement. Current renewable energy sources have less power conversion efficiency because of its intermittent and fluctuating behavior. Therefore, in this regard, the recent AI and optimization techniques are able to deal with data ambiguity, noise, imprecision, and nonlinear behavior of renewable energy sources more efficiently compared to classical soft computing techniques. This book provides an extensive analysis of recent state of the art AI and optimization techniques applied to green energy systems. Subsequently, researchers, industry persons, undergraduate and graduate students involved in green energy will greatly benefit from this comprehensive volume, a must-have for any library. Audience Engineers, scientists, managers, researchers, students, and other professionals working in the field of renewable energy. |
charging station management system: Knowledge-Based and Intelligent Information and Engineering Systems, Part I Andreas Koenig, Andreas Dengel, Knut Hinkelmann, Koichi Kise, Robert J. Howlett, Lakhmi C. Jain, 2011-09-15 The four-volume set LNAI 6881-LNAI 6884 constitutes the refereed proceedings of the 15th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2011, held in Kaiserslautern, Germany, in September 2011. Part 1: The total of 244 high-quality papers presented were carefully reviewed and selected from numerous submissions. The 61 papers of Part 1 are organized in topical sections on artificial neural networks, connectionists systems and evolutionary computation, machine learning and classical AI, agent, multi-agentsystems, knowledge based and expert systems, intelligent vision, image processing and signal processing, knowledge management, ontologies, and data mining. |
charging station management system: Plug-In Electric Vehicles David B. Sandalow, 2009-09-01 Plug-in electric vehicles are coming. Major automakers plan to commercialize their first models soon, while Israel and Denmark have ambitious plans to electrify large portions of their vehicle fleets. No technology has greater potential to end the United States' crippling dependence on oil, which leaves the nation vulnerable to price shocks, supply disruptions, environmental degradation, and national security threats including terrorism. What does the future hold for this critical technology, and what should the U.S. government do to promote it? Hybrid vehicles now number more than one million on America's roads, and they are in high demand from consumers. The next major technological step is the plug-in electric vehicle. It combines an internal combustion engine and electric motor, just as hybrids do. But unlike their precursors, PEVs can be recharged from standard electric outlets, meaning the vehicles would no longer be dependent on oil. Widespread growth in the use of PEVs would dramatically reduce oil dependence, cut driving costs and reduce pollution from vehicles. National security would be enhanced, as reduced oil dependence decreases the leverage and resources of petroleum exporters. Brookings fellow David Sandalow heads up an authoritative team of experts including former government officials, private-sector analysts, academic experts, and nongovernmental advocates. Together they explain the current landscape for PEVs: the technology, the economics, and the implications for national security and the environment. They examine how the national interest could be served by federal promotion and investment in PEVs. For example, can tax or procurement policy advance the cause of PEVs? Should the public sector contribute to greater research and development? Should the government insist on PEVs to replenish its huge fleet of official vehicles? Plug-in electric vehicles are coming. But how soon, in what numbers, and to what effect? Feder |
charging station management system: Code of Practice for Electric Vehicle Charging Equipment Installation The Institution of Engineering and Technology, 2018-08 This Code of Practice provides a clear overview of EV charging equipment, as well as setting out the considerations needed prior to installation and the necessary physical and electrical installation requirements. It also details what needs to be considered when installing electric vehicle charging equipment in various different locations - such as domestic dwellings, on-street locations, and commercial and industrial premises. Key changes from the second edition include: Two completely new sections Vehicles as Energy Storage Integration with smart metering and control, automation and monitoring systems A new Annex A complete update to the new requirements in BS 7671:2018 Bringing the Code in line with revised regulations and good practice The risk assessments and checklists have also been reviewed and revised. This very well established Code of Practice, supported by all the major stakeholders in the industry, is essential reading for anyone involved in the rapid expansion of EV charging points, and those involved in maintenance, extension, modification and periodic verification of electrical installations that incorporate EV charging. |
charging station management system: Pyomo – Optimization Modeling in Python William E. Hart, Carl Laird, Jean-Paul Watson, David L. Woodruff, 2012-02-15 This book provides a complete and comprehensive reference/guide to Pyomo (Python Optimization Modeling Objects) for both beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. The text illustrates the breadth of the modeling and analysis capabilities that are supported by the software and support of complex real-world applications. Pyomo is an open source software package for formulating and solving large-scale optimization and operations research problems. The text begins with a tutorial on simple linear and integer programming models. A detailed reference of Pyomo's modeling components is illustrated with extensive examples, including a discussion of how to load data from data sources like spreadsheets and databases. Chapters describing advanced modeling capabilities for nonlinear and stochastic optimization are also included. The Pyomo software provides familiar modeling features within Python, a powerful dynamic programming language that has a very clear, readable syntax and intuitive object orientation. Pyomo includes Python classes for defining sparse sets, parameters, and variables, which can be used to formulate algebraic expressions that define objectives and constraints. Moreover, Pyomo can be used from a command-line interface and within Python's interactive command environment, which makes it easy to create Pyomo models, apply a variety of optimizers, and examine solutions. The software supports a different modeling approach than commercial AML (Algebraic Modeling Languages) tools, and is designed for flexibility, extensibility, portability, and maintainability but also maintains the central ideas in modern AMLs. |
charging station management system: Battery Management System and its Applications Xiaojun Tan, Andrea Vezzini, Yu-qian Fan, Neeta Khare, You-Lin Xu, Liang-liang Wei, 2023-02-21 BATTERY MANAGEMENT SYSTEM AND ITS APPLICATIONS Enables readers to understand basic concepts, design, and implementation of battery management systems Battery Management System and its Applications is an all-in-one guide to basic concepts, design, and applications of battery management systems (BMS), featuring industrially relevant case studies with detailed analysis, and providing clear, concise descriptions of performance testing, battery modeling, functions, and topologies of BMS. In Battery Management System and its Applications, readers can expect to find information on: Core and basic concepts of BMS, to help readers establish a foundation of relevant knowledge before more advanced concepts are introduced Performance testing and battery modeling, to help readers fully understand Lithium-ion batteries Basic functions and topologies of BMS, with the aim of guiding readers to design simple BMS themselves Some advanced functions of BMS, drawing from the research achievements of the authors, who have significant experience in cross-industry research Featuring detailed case studies and industrial applications, Battery Management System and its Applications is a must-have resource for researchers and professionals working in energy technologies and power electronics, along with advanced undergraduate/postgraduate students majoring in vehicle engineering, power electronics, and automatic control. |
charging station management system: Intelligent Energy Management Technologies Mohammad Shorif Uddin, Avdhesh Sharma, Kusum Lata Agarwal, Mukesh Saraswat, 2020-12-01 This book is a collection of best selected high-quality research papers presented at the International Conference on Advances in Energy Management (ICAEM 2019) organized by the Department of Electrical Engineering, Jodhpur Institute of Engineering & Technology (JIET), Jodhpur, India, during 20–21 December 2019. The book discusses intelligent energy management technologies which are cost effective compared to the high cost of fossil fuels. This book also explains why these systems have beneficial impact on environmental, economic and political issues of the world. The book is immensely useful for research scholars, academicians, R&D institutions, practicing engineers and managers from industry. |
charging station management system: Technologies and Applications for Smart Charging of Electric and Plug-in Hybrid Vehicles Ottorino Veneri, 2016-12-30 This book outlines issues related to massive integration of electric and plug-in hybrid electric vehicles into power grids. Electricity is becoming the preferred energy vector for the next new generation of road vehicles. It is widely acknowledged that road vehicles based on full electric or hybrid drives can mitigate problems related to fossil fuel dependence. This book explains the emerging and understanding of storage systems for electric and plug-in hybrid vehicles. The recharging stations for these types of vehicles might represent a great advantage for the electric grid by facilitating integration of renewable and distributed energy production. This book presents a broad review from analyzing current literature to on-going research projects about the new power technologies related to the various charging architectures for electric and plug-in hybrid vehicles. Specifically focusing on DC fast charging operations, as well as, grid-connected power converters and the full range of energy storage systems. These key components are analyzed for distributed generation and charging system integration into micro-grids. The authors demonstrate that these storage systems represent effective interfaces for the control and management of renewable and sustainable distributed energy resources. New standards and applications are emerging from micro-grid pilot projects around the world and case studies demonstrate the convenience and feasibility of distributed energy management. The material in this unique volume discusses potential avenues for further research toward achieving more reliable, more secure and cleaner energy. |
charging station management system: Solar Powered Charging Infrastructure for Electric Vehicles Larry E. Erickson, Jessica Robinson, Gary Brase, Jackson Cutsor, 2016-10-14 The Paris Agreement on Climate Change adopted on December 12, 2015 is a voluntary effort to reduce greenhouse gas emissions. In order to reach the goals of this agreement, there is a need to generate electricity without greenhouse gas emissions and to electrify transportation. An infrastructure of SPCSs can help accomplish both of these transitions. Globally, expenditures associated with the generation, transmission, and use of electricity are more than one trillion dollars per year. Annual transportation expenditures are also more than one trillion dollars per year. Almost everyone will be impacted by these changes in transportation, solar power generation, and smart grid developments. The benefits of reducing greenhouse gas emissions will differ with location, but all will be impacted. This book is about the benefits associated with adding solar panels to parking lots to generate electricity, reduce greenhouse gas emissions, and provide shade and shelter from rain and snow. The electricity can flow into the power grid or be used to charge electric vehicles (EVs). Solar powered charging stations (SPCSs) are already in many parking lots in many countries of the world. The prices of solar panels have decreased recently, and about 30% of the new U.S. electrical generating capacity in 2015 was from solar energy. More than one million EVs are in service in 2016, and there are significant benefits associated with a convenient charging infrastructure of SPCSs to support transportation with electric vehicles. Solar Powered Charging Infrastructure for Electric Vehicles: A Sustainable Development aims to share information on pathways from our present situation to a world with a more sustainable transportation system with EVs, SPCSs, a modernized smart power grid with energy storage, reduced greenhouse gas emissions, and better urban air quality. Covering 200 million parking spaces with solar panels can generate about 1/4 of the electricity that was generated in 2014 in the United States. Millions of EVs with 20 to 50 kWh of battery storage can help with the transition to wind and solar power generation through owners responding to time-of-use prices. Written for all audiences, high school and college teachers and students, those in industry and government, and those involved in community issues will benefit by learning more about the topics addressed in the book. Those working with electrical power and transportation, who will be in the middle of the transition, will want to learn about all of the challenges and developments that are addressed here. |
charging station management system: Modern Electric, Hybrid Electric, and Fuel Cell Vehicles Mehrdad Ehsani, Yimin Gao, Stefano Longo, Kambiz Ebrahimi, 2018-02-02 This book is an introduction to automotive technology, with specic reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. An automotive engineer, on the other hand, might use it to better understand the nature of motors and electric storage systems for application in automobiles, trucks or motorcycles. The early chapters of the book are accessible to technically literate people who need to know something about cars. While the rst chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems.” —James Kirtley, Massachusetts Institute of Technology, USA “The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry.” —Haiyan Henry Zhang, Purdue University, USA “The extensive combined experience of the authors have produced an extensive volume covering a broad range but detailed topics on the principles, design and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear and concise manner. The volume offers a complete overview of technologies, their selection, integration & control, as well as an interesting Technical Overview of the Toyota Prius. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientic computing packages. It will be of interest mainly to research postgraduates working in this eld as well as established academic researchers, industrial R&D engineers and allied professionals.” —Christopher Donaghy-Sparg, Durham University, United Kingdom The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. All the chapters have been updated, and two new chapters on Mild Hybrids and Optimal Sizing and Dimensioning and Control are also included • Chapters updated throughout the text. • New homework problems, solutions, and examples. • Includes two new chapters. • Features accompanying MATLABTM software. |
charging station management system: Research Anthology on Architectures, Frameworks, and Integration Strategies for Distributed and Cloud Computing Management Association, Information Resources, 2021-01-25 Distributed systems intertwine with our everyday lives. The benefits and current shortcomings of the underpinning technologies are experienced by a wide range of people and their smart devices. With the rise of large-scale IoT and similar distributed systems, cloud bursting technologies, and partial outsourcing solutions, private entities are encouraged to increase their efficiency and offer unparalleled availability and reliability to their users. The Research Anthology on Architectures, Frameworks, and Integration Strategies for Distributed and Cloud Computing is a vital reference source that provides valuable insight into current and emergent research occurring within the field of distributed computing. It also presents architectures and service frameworks to achieve highly integrated distributed systems and solutions to integration and efficient management challenges faced by current and future distributed systems. Highlighting a range of topics such as data sharing, wireless sensor networks, and scalability, this multi-volume book is ideally designed for system administrators, integrators, designers, developers, researchers, academicians, and students. |
charging station management system: Ask a Manager Alison Green, 2018-05-01 From the creator of the popular website Ask a Manager and New York’s work-advice columnist comes a witty, practical guide to 200 difficult professional conversations—featuring all-new advice! There’s a reason Alison Green has been called “the Dear Abby of the work world.” Ten years as a workplace-advice columnist have taught her that people avoid awkward conversations in the office because they simply don’t know what to say. Thankfully, Green does—and in this incredibly helpful book, she tackles the tough discussions you may need to have during your career. You’ll learn what to say when • coworkers push their work on you—then take credit for it • you accidentally trash-talk someone in an email then hit “reply all” • you’re being micromanaged—or not being managed at all • you catch a colleague in a lie • your boss seems unhappy with your work • your cubemate’s loud speakerphone is making you homicidal • you got drunk at the holiday party Praise for Ask a Manager “A must-read for anyone who works . . . [Alison Green’s] advice boils down to the idea that you should be professional (even when others are not) and that communicating in a straightforward manner with candor and kindness will get you far, no matter where you work.”—Booklist (starred review) “The author’s friendly, warm, no-nonsense writing is a pleasure to read, and her advice can be widely applied to relationships in all areas of readers’ lives. Ideal for anyone new to the job market or new to management, or anyone hoping to improve their work experience.”—Library Journal (starred review) “I am a huge fan of Alison Green’s Ask a Manager column. This book is even better. It teaches us how to deal with many of the most vexing big and little problems in our workplaces—and to do so with grace, confidence, and a sense of humor.”—Robert Sutton, Stanford professor and author of The No Asshole Rule and The Asshole Survival Guide “Ask a Manager is the ultimate playbook for navigating the traditional workforce in a diplomatic but firm way.”—Erin Lowry, author of Broke Millennial: Stop Scraping By and Get Your Financial Life Together |
charging station management system: Drawdown Paul Hawken, 2017-04-18 • New York Times bestseller • The 100 most substantive solutions to reverse global warming, based on meticulous research by leading scientists and policymakers around the world “At this point in time, the Drawdown book is exactly what is needed; a credible, conservative solution-by-solution narrative that we can do it. Reading it is an effective inoculation against the widespread perception of doom that humanity cannot and will not solve the climate crisis. Reported by-effects include increased determination and a sense of grounded hope.” —Per Espen Stoknes, Author, What We Think About When We Try Not To Think About Global Warming “There’s been no real way for ordinary people to get an understanding of what they can do and what impact it can have. There remains no single, comprehensive, reliable compendium of carbon-reduction solutions across sectors. At least until now. . . . The public is hungry for this kind of practical wisdom.” —David Roberts, Vox “This is the ideal environmental sciences textbook—only it is too interesting and inspiring to be called a textbook.” —Peter Kareiva, Director of the Institute of the Environment and Sustainability, UCLA In the face of widespread fear and apathy, an international coalition of researchers, professionals, and scientists have come together to offer a set of realistic and bold solutions to climate change. One hundred techniques and practices are described here—some are well known; some you may have never heard of. They range from clean energy to educating girls in lower-income countries to land use practices that pull carbon out of the air. The solutions exist, are economically viable, and communities throughout the world are currently enacting them with skill and determination. If deployed collectively on a global scale over the next thirty years, they represent a credible path forward, not just to slow the earth’s warming but to reach drawdown, that point in time when greenhouse gases in the atmosphere peak and begin to decline. These measures promise cascading benefits to human health, security, prosperity, and well-being—giving us every reason to see this planetary crisis as an opportunity to create a just and livable world. |
charging station management system: Applications of AI and IOT in Renewable Energy Rabindra Nath Shaw, Ankush Ghosh, Saad Mekhilef, Valentina Emilia Balas, 2022-02-09 Applications of AI and IOT in Renewable Energy provides a future vision of unexplored areas and applications for Artificial Intelligence and Internet of Things in sustainable energy systems. The ideas presented in this book are backed up by original, unpublished technical research results covering topics like smart solar energy systems, intelligent dc motors and energy efficiency study of electric vehicles. In all these areas and more, applications of artificial intelligence methods, including artificial neural networks, genetic algorithms, fuzzy logic and a combination of the above in hybrid systems are included. This book is designed to assist with developing low cost, smart and efficient solutions for renewable energy systems and is intended for researchers, academics and industrial communities engaged in the study and performance prediction of renewable energy systems. - Includes future applications of AI and IOT in renewable energy - Based on case studies to give each chapter real-life context - Provides advances in renewable energy using AI and IOT with technical detail and data |
charging station management system: 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA) IEEE Staff, 2019-06-12 ICECA 2019 will provide an outstanding international forum for scientists from all over the world to share ideas and achievements in the theory and practice of all areas of aero space technologies Presentations should highlight inventive systems as a concept that combines theoretical research and applications in Electronics, Communication, Information and Aerospace technologies |
charging station management system: Three Revolutions Daniel Sperling, 2018-03 Front Cover -- About Island Press -- Subscribe -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- 1. Will the Transportation Revolutions Improve Our Lives-- or Make Them Worse? -- 2. Electric Vehicles: Approaching the Tipping Point -- 3. Shared Mobility: The Potential of Ridehailing and Pooling -- 4. Vehicle Automation: Our Best Shot at a Transportation Do-Over? -- 5. Upgrading Transit for the Twenty-First Century -- 6. Bridging the Gap between Mobility Haves and Have-Nots -- 7. Remaking the Auto Industry -- 8. The Dark Horse: Will China Win the Electric, Automated, Shared Mobility Race? -- Epilogue -- Notes -- About the Contributors -- Index -- IP Board of Directors |
charging station management system: Stand-Alone and Hybrid Wind Energy Systems J K Kaldellis, 2010-07-27 Wind power is fast becoming one of the leading renewable energy sources worldwide, not only from large scale wind farms but also from the increasing penetration of stand-alone and hybrid wind energy systems. These systems are primarily of benefit in small-scale applications, especially where there is no connection to a central electricity network, and where there are limited conventional fuel resources but available renewable energy resources. By applying appropriate planning, systems selection and sizing, including the integration of energy storage devices to mitigate variable energy generation patterns, theses systems can supply secure reliable and economic power to remote locations and distributed micro-grids.Stand-alone and hybrid wind energy systems is a synthesis of the most recent knowledge and experience on wind-based hybrid renewable energy systems, comprehensively covering the scientific, technical and socio-economic issues involved in the application of these systems.Part one presents an overview of the fundamental science and engineering of stand-alone and hybrid wind energy systems and energy storage technology, including design and performance optimisation methods and feasibility assessment for these systems. Part two initially reviews the design, development, operation and optimisation of stand-alone and hybrid wind energy systems – including wind-diesel, wind -photovoltaic (PV), wind-hydrogen, and wind-hydropower energy systems – before moving on to examine applicable energy storage technology, including electro-chemical, flywheel (kinetic) and compressed air energy storage technologies. Finally, Part three assesses the integration of stand-alone and hybrid wind energy systems and energy technology into remote micro-grids and buildings, and their application for desalination systems.With its distinguished editor and international team of contributors, Stand-alone and hybrid wind energy systems is a standard reference for all renewable energy professionals, consultants, researchers and academics from post-graduate level up. - Provides an overview of the fundamental science and engineering of stand-alone hybrid and wind energy systems, including design and performance optimisation methods - Reviews the development and operation of stand-alone and hybrid wind energy systems - Assesses the integration of stand-alone and hybrid wind energy systems and energy storage technology into remote micro-grids and buildings, and their application for desalination systems |
charging station management system: Handbook of Research on Interdisciplinary Approaches to Decision Making for Sustainable Supply Chains Awasthi, Anjali, Grzybowska, Katarzyna, 2019-09-27 Businesses must create initiatives and adopt eco-friendly practices in order to adhere to the sustainability goals of a globalized world. Recycling, product service systems, and green manufacturing are just a few methods businesses use within a sustainable supply chain. However, these tools and techniques must also ensure business growth in order to remain relevant in an environmentally-conscious world. The Handbook of Research on Interdisciplinary Approaches to Decision Making for Sustainable Supply Chains provides interdisciplinary approaches to sustainable supply chain management through the optimization of system performance and development of new policies, design networks, and effective reverse logistics practices. Featuring research on topics such as industrial symbiosis, green collaboration, and clean transportation, this book is ideally designed for policymakers, business executives, warehouse managers, operations managers, suppliers, industry professionals, sustainability developers, decision makers, students, academicians, practitioners, and researchers seeking current research on reducing the environmental impacts of businesses via sustainable supply chain planning. |
charging station management system: Handbook on Battery Energy Storage System Asian Development Bank, 2018-12-01 This handbook serves as a guide to deploying battery energy storage technologies, specifically for distributed energy resources and flexibility resources. Battery energy storage technology is the most promising, rapidly developed technology as it provides higher efficiency and ease of control. With energy transition through decarbonization and decentralization, energy storage plays a significant role to enhance grid efficiency by alleviating volatility from demand and supply. Energy storage also contributes to the grid integration of renewable energy and promotion of microgrid. |
charging station management system: Sustainable Interdependent Networks M. Hadi Amini, Kianoosh G. Boroojeni, S.S. Iyengar, Panos M. Pardalos, Frede Blaabjerg, Asad M. Madni, 2018-02-23 This book focuses on the theory and application of interdependent networks. The contributors consider the influential networks including power and energy networks, transportation networks, and social networks. The first part of the book provides the next generation sustainability framework as well as a comprehensive introduction of smart cities with special emphasis on energy, communication, data analytics and transportation. The second part offers solutions to performance and security challenges of developing interdependent networks in terms of networked control systems, scalable computation platforms, and dynamic social networks. The third part examines the role of electric vehicles in the future of sustainable interdependent networks. The fourth and last part of this volume addresses the promises of control and management techniques for the future power grids. |
charging station management system: Software Architecture Matthias Galster, |
charging station management system: Microgrids for Commercial Systems Sivaraman Palanisamy, Sharmeela Chenniappan, Sanjeevikumar Padmanaban, 2024-02-27 MICROGRIDS for COMMERCIAL SYSTEMS This distinct volume provides detailed information on the concepts and applications of the emerging field of microgrids for commercial applications, offering solutions in the design, installation, and operation of this new, cutting-edge technology. The microgrid is defined as Distributed Energy Resources (DER) and interconnected loads with clearly defined electrical boundaries that act as a single controllable entity concerning the grid as per IEEE standard 2030.7-2017. It provides an uninterrupted power supply to end-user loads with high reliability. Commercial systems like IT/ITES, shopping complexes, malls, the banking sector, hospitals, etc., need an uninterrupted input power supply with high reliability. Microgrids are more suitable for commercial systems to service their clients with no service discontinuity. The microgrid enables both connection and disconnection from the grid. That is, the microgrid can operate both in grid-connected and islanded modes of operation. The microgrid controller plays an important role in microgrid systems. It shall have an energy management system and real-time control functions that operate in the following conditions: both grid-connected and islanded modes of operation, automatic transfer from grid-connected mode to islanding mode, reconnection and re-synchronization from islanded mode to grid-connected mode, optimization of both real and reactive power generation and consumption by the energy management system, grid support, ancillary services, etc. Whenever a microgrid is in islanded mode, it will work as an autonomous system without a distribution grid power supply. In this mode of operation, fault in the transmission or distribution grid will not propagate into the microgrid. Whenever a microgrid operates in grid-connected mode, power flows bi-directionally between the distribution grid and microgrid at the point of interconnection. Hence, microgrids ensure the interrupted power supply to the end-user loads with high reliability. This book aims to bring together the design, installation, operation, and new research that has been carried out in the field of microgrid applications for commercial power systems. |
charging station management system: Battery Management Systems H.J. Bergveld, W.S. Kruijt, P.H.L Notten, 2013-03-09 Battery Management Systems - Design by Modelling describes the design of Battery Management Systems (BMS) with the aid of simulation methods. The basic tasks of BMS are to ensure optimum use of the energy stored in the battery (pack) that powers a portable device and to prevent damage inflicted on the battery (pack). This becomes increasingly important due to the larger power consumption associated with added features to portable devices on the one hand and the demand for longer run times on the other hand. In addition to explaining the general principles of BMS tasks such as charging algorithms and State-of-Charge (SoC) indication methods, the book also covers real-life examples of BMS functionality of practical portable devices such as shavers and cellular phones. Simulations offer the advantage over measurements that less time is needed to gain knowledge of a battery's behaviour in interaction with other parts in a portable device under a wide variety of conditions. This knowledge can be used to improve the design of a BMS, even before a prototype of the portable device has been built. The battery is the central part of a BMS and good simulation models that can be used to improve the BMS design were previously unavailable. Therefore, a large part of the book is devoted to the construction of simulation models for rechargeable batteries. With the aid of several illustrations it is shown that design improvements can indeed be realized with the presented battery models. Examples include an improved charging algorithm that was elaborated in simulations and verified in practice and a new SoC indication system that was developed showing promising results. The contents of Battery Management Systems - Design by Modelling is based on years of research performed at the Philips Research Laboratories. The combination of basic and detailed descriptions of battery behaviour both in chemical and electrical terms makes this book truly multidisciplinary. It can therefore be read both by people with an (electro)chemical and an electrical engineering background. |
charging station management system: Smart Grid Systems N. Ramesh Babu, 2018-07-04 Electric power systems are being transformed from older grid systems to smart grids across the globe. The goals of this transition are to address today’s electric power issues, which include reducing carbon footprints, finding alternate sources of decaying fossil fuels, eradicating losses that occur in the current available systems, and introducing the latest information and communication technologies (ICT) for electric grids. The development of smart grid technology is advancing dramatically along with and in reaction to the continued growth of renewable energy technologies (especially wind and solar power), the growing popularity of electric vehicles, and the continuing huge demand for electricity. Smart Grid Systems: Modeling and Control advances the basic understanding of smart grids and focuses on recent technological advancements in the field. This book provides a comprehensive discussion from a number of experts and practitioners and describes the challenges and the future scope of the technologies related to smart grid. Key features: provides an overview of the smart grid, with its needs, benefits, challenges, existing structure, and possible future technologies discusses solar photovoltaic (PV) system modeling and control along with battery storage, an integral part of smart grids discusses control strategies for renewable energy systems, including solar PV, wind, and hybrid systems describes the inverter topologies adopted for integrating renewable power covers the basics of the energy storage system and the need for micro grids describes forecast techniques for renewable energy systems presents the basics and structure of the energy management system in smart grids, including advanced metering, various communication protocols, and the cyber security challenges explores electric vehicle technology and its interaction with smart grids |
charging station management system: ICT for Electric Vehicle Integration with the Smart Grid Nand Kishor, Jesús Fraile-Ardanuy, 2020 This book provides a basis for full integration of electric vehicles into the smart grid, through the use of ICT tools. It looks at transport and energy system modelling, simulation and optimisation processes; vehicle on-line optimal control, estimation and prediction; energy system strategic planning; and services such as smart charging. |
charging station management system: Fast Charging and Resilient Transportation Infrastructures in Smart Cities Hossam A. Gabbar, 2022-08-03 This book provides readers with expert knowledge on the design of fast charging infrastructures and their planning in smart cities and communities to support autonomous transportation. The recent development of fast charging infrastructures using hybrid energy systems is examined, along with aspects of connected and autonomous vehicles (CAV) and their integration within transportation networks and city infrastructures. The book looks at challenges and opportunities for autonomous transportation, including connected and autonomous vehicles, shuttles, and their technology development and deployment within smart communities. Intelligent control strategies, architectures, and systems are also covered, along with intelligent data centers that ensure effective transportation networks during normal and emergency situations. Planning strategies are presented to demonstrate the resilient transportation infrastructures, and optimized performance is discussed in view of performance indicators and requirements specifications, as well as regulations and standards. |
charging station management system: AI Techniques for Renewable Source Integration and Battery Charging Methods in Electric Vehicle Applications Angalaeswari, S., Deepa, T., Kumar, L. Ashok, 2023-02-03 Artificial intelligence techniques applied in the power system sector make the prediction of renewable power source generation and demand more efficient and effective. Additionally, since renewable sources are intermittent in nature, it is necessary to predict and analyze the data of input sources. Hence, further study on the prediction and data analysis of renewable energy sources for sustainable development is required. AI Techniques for Renewable Source Integration and Battery Charging Methods in Electric Vehicle Applications focuses on artificial intelligence techniques for the evolving power system field, electric vehicle market, energy storage elements, and renewable energy source integration as distributed generators. Covering key topics such as deep learning, artificial intelligence, and smart solar energy, this premier reference source is ideal for environmentalists, computer scientists, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students. |
charging station management system: Energy Storage for Modern Power System Operations Sandeep Dhundhara, Yajvender Pal Verma, 2021-10-19 ENERGY STORAGE for MODERN POWER SYSTEM OPERATIONS Written and edited by a team of well-known and respected experts in the field, this new volume on energy storage presents the state-of-the-art developments and challenges for modern power systems for engineers, researchers, academicians, industry professionals, consultants, and designers. Energy storage systems have been recognized as the key elements in modern power systems, where they are able to provide primary and secondary frequency controls, voltage regulation, power quality improvement, stability enhancement, reserve service, peak shaving, and so on. Particularly, deployment of energy storage systems in a distributed manner will contribute greatly in the development of smart grids and providing promising solutions for the above issues. The main challenges will be the adoption of new techniques and strategies for the optimal planning, control, monitoring and management of modern power systems with the wide installation of distributed energy storage systems. Thus, the aim of this book is to illustrate the potential of energy storage systems in different applications of modern power systems, with a view toward illuminating recent advances and research trends in storage technologies. This exciting new volume covers the recent advancements and applications of different energy storage technologies that are useful to engineers, scientists, and students in the discipline of electrical engineering. Suitable for the engineers at power companies and energy storage consultants working in the energy storage field, this book offers a cross-disciplinary look across electrical, mechanical, chemical and renewable engineering aspects of energy storage. Whether for the veteran engineer or the student, this is a must-have for any library. AUDIENCE Electrical engineers and other designers, engineers, and scientists working in energy storage |
charging station management system: Low-carbon City and New-type Urbanization Songlin Feng, Weiguang Huang, Jun Wang, Mingquan Wang, Jun Zha, 2015-01-23 In the face of increasingly serious resource and environmental challenges, the world has already accepted low-carbon development as the main way forward for future city construction. Chinese cities have encountered many problems during their development, including land constraints, energy shortages, traffic congestion and air pollution. For this reason, the national meeting of the Central Work Conference on Urbanization made the strategic decision to take a new approach to urbanization and indicated that in future the key features of urbanization in China will be low-carbon development and harmony between the environment and resources. This book discusses the low-carbon city as the new pattern of Chinese urbanization. This represents a major change and takes intensive land use,” “intelligent,” “green” and “low carbon as its key words. Low carbon will become an important future development direction for Chinese urbanization development. In the twenty-first Century in response to the global climate change, countries have started a wave of low-carbon city construction. But in China, there are still many disputes and misunderstandings surrounding the issue. Due to a lack of research, low-carbon city construction in China is still in the early stages, and while there have been successes, there have also been failures. There are complex and diverse challenges in applying low-carbon development methods in the context of today’s Chinese cities. The construction of low-carbon cities requires efficient government, the technological innovation of enterprises, and professional scholars, but also efforts on the part of the public to change their daily activities. Based on the above considerations, the collection brings together experts from urban planning and design, clean-energy systems, low-carbon transportation, new types of city infrastructure and smart cities etc., in the hope of forming some solutions for Chinese low-carbon city development. |
charging station management system: The Electric Vehicle and the Burden of History David A. Kirsch, 2000 In the context of regulations requiring emission so low that electric and hybrid cars will be necessary, Kirsch (industrial ecology, U. of California-Los Angeles) takes the Electric Vehicle Company as a starting point for a vision of an alternative automotive system in which gasoline and electric vehicles would each have been used to supply different kinds of transport services. He argues that technological superiority was in the hearts and minds of engineers, consumers, and drivers. Annotation copyrighted by Book News, Inc., Portland, OR |
charging station management system: Mechatronics and Automation Technology J.-Y. Xu, 2024-02-27 Mechatronics and automation technology has led to technological change and innovation in all engineering fields, affecting various disciplines, including machine technology, electronics, and computing. It plays a vital role in improving production efficiency, reducing energy consumption and improving product quality and safety, and will be central to the further advancement of technology and industry, bringing convenience and innovation to even more areas. This book presents the proceedings of ICMAT 2023, the 2nd International Conference on Mechatronics and Automation Technology, held as a virtual event on 27 October 2023. The aim of the conference was to provide a platform for scientists, scholars, engineers and researchers from universities and scientific institutes around the world to share the latest research achievements in mechatronics and automation technology, explore key challenges and research directions, and promote the development and application of theory and technology in this field. A total of 121 submissions were received for the conference, of which 77 were ultimately accepted after a rigorous peer-review process. The papers cover a wide range of topics falling within the scope of mechatronics and automation technology, including smart manufacturing; digital manufacturing; additive manufacturing; robotics; sensors; control; electronic and electrical engineering; intelligent systems; and automation technology, as well as other related fields. Providing an overview of recent developments in mechatronics and automation technology, the book will be of interest to all those working in the field. |
charging station management system: Intelligent Sustainable Systems Atulya K. Nagar, Dharm Singh Jat, Durgesh Kumar Mishra, Amit Joshi, 2023-01-24 This book provides insights of World Conference on Smart Trends in Systems, Security and Sustainability (WS4 2022) which is divided into different sections such as Smart IT Infrastructure for Sustainable Society; Smart Management Prospective for Sustainable Society; Smart Secure Systems for Next Generation Technologies; Smart Trends for Computational Graphics and Image Modeling; and Smart Trends for Biomedical and Health Informatics. The proceedings is presented in two volumes. The book is helpful for active researchers and practitioners in the field. |
charging station management system: Integrated Energy Systems for Multigeneration Ibrahim Dincer, Dr. Yusuf Bicer, 2019-09-13 Integrated Energy Systems for Multigeneration looks at how measures implemented to limit greenhouse gas emissions must consider smart utilization of available limited resources and employ renewable resources through integrated energy systems and the utilization of waste energy streams. This reference considers the main concepts of thermal and conventional energy systems through detailed systems description, analyses of methodologies, performance assessment and optimization, and illustrative examples and case studies. The book examines producing power and heat with cooling, freshwater, green fuels and other useful commodities designed to tackle rising greenhouse gas emissions in the atmosphere. With worldwide energy demand increasing, and the consequences of meeting supply with current dependency on fossil fuels, investigating and developing sustainable alternatives to the conventional energy systems is a growing concern for global stakeholders. - Analyzes the links between clean energy technologies and achieving sustainable development - Illustrates several examples of design and analysis of integrated energy systems - Discusses performance assessment and optimization - Uses illustrative examples and global case studies to explain methodologies and concepts |
charging station management system: Operations Research Proceedings 2012 Stefan Helber, Michael Breitner, Daniel Rösch, Cornelia Schön, Johann-Matthias Graf von der Schulenburg, Philipp Sibbertsen, Marc Steinbach, Stefan Weber, Anja Wolter, 2013-11-27 This book contains selected papers presented at the International Annual Conference of the German Operations Research Society (OR2012) which was held September 4 -7, 2012 at the Leibniz Universität Hannover, Germany. The international conference, which also serves as the annual meeting of the German Operations Research Society (GOR), attracted more than 500 participants from more than 39 countries. Special attention at the conference was given to the three topics Energy, Markets and Mobility. The OR2012 conference has addressed these topics from an OR perspective, treating them not only in isolation, but also with respect to their numerous and exciting interconnections, such as new energy for new mobility concepts and new market mechanisms for sustainable energy production to name but a few. The proceedings show that this conference topic is an important and promising area to apply Operations Research. The book also contains numerous papers addressing the full scope of fields in Operations Research. |
charging station management system: Smart Energy for Transportation and Health in a Smart City Chun Sing Lai, Loi Lei Lai, Qi Hong Lai, 2022-12-13 A comprehensive review of the advances of smart cities’ smart energy, transportation, infrastructure, and health Smart Energy for Transportation and Health in a Smart City offers an essential guide to the functions, characteristics, and domains of smart cities and the energy technology necessary to sustain them. The authors—noted experts on the topic—include the theoretical underpinnings, the practical information, and the potential benefits for the development of smart cities. The book includes information on various financial models of energy storage, the management of networked micro-grids, coordination of virtual energy storage systems, reliability modeling and assessment of cyber space, and the development of a vehicle-to-grid voltage support. The authors review smart transportation elements such as the advanced metering infrastructure for electric vehicle charging, power system dispatching with plug-in hybrid electric vehicles, and the best practices for low power wide area network technologies. In addition, the book explores smart health that is based on the Internet of Things and smart devices that can help improve patient care processes and decrease costs while maintaining quality. This important resource: Examines the challenges and opportunities that arise with the development of smart cities Presents a state-of-the-art financial models of smart energy storage Clearly explores the elements of a smart city based on the advancement of information and communication technology Contains a review of advances in smart health for smart cities Includes a variety of real-life case studies that illustrate the various components of a smart city Written for practicing engineers and engineering students, Smart Energy for Transportation and Health in Smart Cities offers a practical guide to the various aspects that create a sustainable smart city. |
charging station management system: Design and Analysis of Distributed Energy Management Systems Tatsuya Suzuki, Shinkichi Inagaki, Yoshihiko Susuki, Anh Tuan Tran, 2020-01-21 This book provides key ideas for the design and analysis of complex energy management systems (EMS) for distributed power networks. Future distributed power networks will have strong coupling with (electrified) mobility and information-communication technology (ICT) and this book addresses recent challenges for electric vehicles in the EMS, and how to synthesize the distributed power network using ICT. This book not only describes theoretical developments but also shows many applications using test beds and provides an overview of cutting edge technologies by leading researchers in their corresponding fields. Describes design and analysis of energy management systems; Illustrates the synthesis of distributed energy management systems based on aggregation of local agents; Discusses dependability issues of the distributed EMS with emphasis on the verification scheme based on remote-operational hardware-in-the-loop (HIL) simulation and cybersecurity. |
How to Calculate the time of Charging and Discharging of battery?
Dec 25, 2011 · Charging of battery: Example: Take 100 AH battery. If the applied Current is 10 Amperes, then it would be 100Ah/10A= 10 hrs approximately. It is an usual calculation. …
charging - USB-C power negotiation - Electrical Engineering Stack …
Mar 10, 2022 · For negotiating the power, USB C has an passive and an active standard. Passive method. With the passive standard, you use your microcontrollers ADC to read the voltage on …
batteries - Simulating a charging battery in LTSPICE - Electrical ...
How would I go about simulating a charging battery in LTSPICE? I've seen these two articles ( A Tutorial on Battery Simulation - Matching Power Source to Electronic System and Accurate …
voltage - How does charging a phone battery work? - Electrical ...
Aug 27, 2015 · There is a charge controller chip inside the phone that determines how much current to put into the battery. Generally lithium ion batteries are charged with a constant current until …
Charging Li-ion batteries in parallel - Electrical Engineering Stack ...
Aug 26, 2014 · I have a Li-ion battery charging circuit based on the MCP73113. This is designed to be a single-cell battery charger. The battery itself (3.7V, 650mAh) comes with its own PCB with …
lithium ion - If Li-Ion battery is deeply discharged, is it harmful for ...
Apr 10, 2015 · Most Lithium charger ICs measure each cell's voltage when charging begins and if the voltage is below a minimum of 2.5V to 3.0V it attempts a charge at a very low current . If the …
How do chargers with different output values work?
Jul 28, 2019 · For example my laptop charger can output: 20V=3.25A, 15V=3A, 9V=2A and 5V=2A. If I were to charge my power bank with it which accepts 5V=3A, 9V=2A and 15V=1.2A as input, …
How can charging current be understood intuitively?
If one of the phases shorts to ground causing a ground fault, the charging current for the other two phases will flow through the ground fault (2)." Apparently the way to directly measure charging …
Charging lead acid batteries in series - Electrical Engineering Stack ...
Nov 23, 2024 · When charging them separately, I use a bench power supply with current and voltage control set to 14.1 V. So, when charging them in series I would set my power supply to …
Voltage input for charging NiMH Batteries - Electrical Engineering ...
Jan 8, 2011 · ΔV charging: charge at recommended constant current until the cell reaches a peak voltage and decreases (eg. -15mV). This technique is accurate enough to safely charge at C/2 to …
How to Calculate the time of Charging and Discharging of battery?
Dec 25, 2011 · Charging of battery: Example: Take 100 AH battery. If the applied Current is 10 Amperes, then it would be 100Ah/10A= 10 hrs approximately. It is an usual calculation. …
charging - USB-C power negotiation - Electrical Engineering Stack …
Mar 10, 2022 · For negotiating the power, USB C has an passive and an active standard. Passive method. With the passive standard, you use your microcontrollers ADC to read the voltage on …
batteries - Simulating a charging battery in LTSPICE - Electrical ...
How would I go about simulating a charging battery in LTSPICE? I've seen these two articles ( A Tutorial on Battery Simulation - Matching Power Source to Electronic System and Accurate …
voltage - How does charging a phone battery work? - Electrical ...
Aug 27, 2015 · There is a charge controller chip inside the phone that determines how much current to put into the battery. Generally lithium ion batteries are charged with a constant …
Charging Li-ion batteries in parallel - Electrical Engineering Stack ...
Aug 26, 2014 · I have a Li-ion battery charging circuit based on the MCP73113. This is designed to be a single-cell battery charger. The battery itself (3.7V, 650mAh) comes with its own PCB …
lithium ion - If Li-Ion battery is deeply discharged, is it harmful for ...
Apr 10, 2015 · Most Lithium charger ICs measure each cell's voltage when charging begins and if the voltage is below a minimum of 2.5V to 3.0V it attempts a charge at a very low current . If …
How do chargers with different output values work?
Jul 28, 2019 · For example my laptop charger can output: 20V=3.25A, 15V=3A, 9V=2A and 5V=2A. If I were to charge my power bank with it which accepts 5V=3A, 9V=2A and 15V=1.2A …
How can charging current be understood intuitively?
If one of the phases shorts to ground causing a ground fault, the charging current for the other two phases will flow through the ground fault (2)." Apparently the way to directly measure charging …
Charging lead acid batteries in series - Electrical Engineering Stack ...
Nov 23, 2024 · When charging them separately, I use a bench power supply with current and voltage control set to 14.1 V. So, when charging them in series I would set my power supply to …
Voltage input for charging NiMH Batteries - Electrical Engineering ...
Jan 8, 2011 · ΔV charging: charge at recommended constant current until the cell reaches a peak voltage and decreases (eg. -15mV). This technique is accurate enough to safely charge at C/2 …