datasets for correlation analysis: Spurious Correlations Tyler Vigen, 2015-05-12 Spurious Correlations ... is the most fun you'll ever have with graphs. -- Bustle Military intelligence analyst and Harvard Law student Tyler Vigen illustrates the golden rule that correlation does not equal causation through hilarious graphs inspired by his viral website. Is there a correlation between Nic Cage films and swimming pool accidents? What about beef consumption and people getting struck by lightning? Absolutely not. But that hasn't stopped millions of people from going to tylervigen.com and asking, Wait, what? Vigen has designed software that scours enormous data sets to find unlikely statistical correlations. He began pulling the funniest ones for his website and has since gained millions of views, hundreds of thousands of likes, and tons of media coverage. Subversive and clever, Spurious Correlations is geek humor at its finest, nailing our obsession with data and conspiracy theory. |
datasets for correlation analysis: Explanatory Model Analysis Przemyslaw Biecek, Tomasz Burzykowski, 2021-02-15 Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems. |
datasets for correlation analysis: A Handbook of Small Data Sets David J. Hand, Fergus Daly, K. McConway, D. Lunn, E. Ostrowski, 1993-11-01 This book should be of interest to statistics lecturers who want ready-made data sets complete with notes for teaching. |
datasets for correlation analysis: Nonparametric Measures of Association Jean Dickinson Gibbons, 1993-02-25 Aimed at helping the researcher select the most appropriate measure of association for two or more variables, the author clearly describes such techniques as Spearman's rho, Kendall's tau, Goodman and Kruskals' gamma and Somer's d and carefully explains the calculation procedures as well as the substantive meaning of each measure. |
datasets for correlation analysis: OpenIntro Statistics David Diez, Christopher Barr, Mine Çetinkaya-Rundel, 2015-07-02 The OpenIntro project was founded in 2009 to improve the quality and availability of education by producing exceptional books and teaching tools that are free to use and easy to modify. We feature real data whenever possible, and files for the entire textbook are freely available at openintro.org. Visit our website, openintro.org. We provide free videos, statistical software labs, lecture slides, course management tools, and many other helpful resources. |
datasets for correlation analysis: Federal Statistics, Multiple Data Sources, and Privacy Protection National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Committee on National Statistics, Panel on Improving Federal Statistics for Policy and Social Science Research Using Multiple Data Sources and State-of-the-Art Estimation Methods, 2018-01-27 The environment for obtaining information and providing statistical data for policy makers and the public has changed significantly in the past decade, raising questions about the fundamental survey paradigm that underlies federal statistics. New data sources provide opportunities to develop a new paradigm that can improve timeliness, geographic or subpopulation detail, and statistical efficiency. It also has the potential to reduce the costs of producing federal statistics. The panel's first report described federal statistical agencies' current paradigm, which relies heavily on sample surveys for producing national statistics, and challenges agencies are facing; the legal frameworks and mechanisms for protecting the privacy and confidentiality of statistical data and for providing researchers access to data, and challenges to those frameworks and mechanisms; and statistical agencies access to alternative sources of data. The panel recommended a new approach for federal statistical programs that would combine diverse data sources from government and private sector sources and the creation of a new entity that would provide the foundational elements needed for this new approach, including legal authority to access data and protect privacy. This second of the panel's two reports builds on the analysis, conclusions, and recommendations in the first one. This report assesses alternative methods for implementing a new approach that would combine diverse data sources from government and private sector sources, including describing statistical models for combining data from multiple sources; examining statistical and computer science approaches that foster privacy protections; evaluating frameworks for assessing the quality and utility of alternative data sources; and various models for implementing the recommended new entity. Together, the two reports offer ideas and recommendations to help federal statistical agencies examine and evaluate data from alternative sources and then combine them as appropriate to provide the country with more timely, actionable, and useful information for policy makers, businesses, and individuals. |
datasets for correlation analysis: Introduction to Data Science Rafael A. Irizarry, 2019-11-20 Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert. |
datasets for correlation analysis: Statistical Methods for Machine Learning Jason Brownlee, 2018-05-30 Statistics is a pillar of machine learning. You cannot develop a deep understanding and application of machine learning without it. Cut through the equations, Greek letters, and confusion, and discover the topics in statistics that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover the importance of statistical methods to machine learning, summary stats, hypothesis testing, nonparametric stats, resampling methods, and much more. |
datasets for correlation analysis: Statistical Computing with R Maria L. Rizzo, 2007-11-15 Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditiona |
datasets for correlation analysis: Chance Encounters C. J. Wild, George A. F. Seber, 1999-11-30 A text for the non-majors introductory statistics service course. The chapters--including Web site material--can be organized for one or two semester sequences; algrebra is the mathematics prerequisite. Web site chapters on quality control, time series, plus business applications regularly throughout the work make it suitable for business statistics courses on some campuses. The text combines lucid and statistically engaging exposition, graphic and poignantly applied examples, realistic exercise settings to take student past the mechanics of introductory-level statistical techniques into the realm of practical data analysis and inference-based problem solving. |
datasets for correlation analysis: Spatial Microsimulation with R Robin Lovelace, Morgane Dumont, 2017-09-07 Generate and Analyze Multi-Level Data Spatial microsimulation involves the generation, analysis, and modeling of individual-level data allocated to geographical zones. Spatial Microsimulation with R is the first practical book to illustrate this approach in a modern statistical programming language. Get Insight into Complex Behaviors The book progresses from the principles underlying population synthesis toward more complex issues such as household allocation and using the results of spatial microsimulation for agent-based modeling. This equips you with the skills needed to apply the techniques to real-world situations. The book demonstrates methods for population synthesis by combining individual and geographically aggregated datasets using the recent R packages ipfp and mipfp. This approach represents the best of both worlds in terms of spatial resolution and person-level detail, overcoming issues of data confidentiality and reproducibility. Implement the Methods on Your Own Data Full of reproducible examples using code and data, the book is suitable for students and applied researchers in health, economics, transport, geography, and other fields that require individual-level data allocated to small geographic zones. By explaining how to use tools for modeling phenomena that vary over space, the book enhances your knowledge of complex systems and empowers you to provide evidence-based policy guidance. |
datasets for correlation analysis: IPython Interactive Computing and Visualization Cookbook Cyrille Rossant, 2014-09-25 Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods. |
datasets for correlation analysis: Artificial Intelligence Techniques for Advanced Computing Applications D. Jude Hemanth, G. Vadivu, M. Sangeetha, Valentina Emilia Balas, 2020-07-23 This book features a collection of high-quality research papers presented at the International Conference on Advanced Computing Technology (ICACT 2020), held at the SRM Institute of Science and Technology, Chennai, India, on 23–24 January 2020. It covers the areas of computational intelligence, artificial intelligence, machine learning, deep learning, big data, and applications of artificial intelligence in networking, IoT and bioinformatics |
datasets for correlation analysis: Statistics for Ecologists Using R and Excel Mark Gardener, 2017-01-16 This is a book about the scientific process and how you apply it to data in ecology. You will learn how to plan for data collection, how to assemble data, how to analyze data and finally how to present the results. The book uses Microsoft Excel and the powerful Open Source R program to carry out data handling as well as producing graphs. Statistical approaches covered include: data exploration; tests for difference – t-test and U-test; correlation – Spearman’s rank test and Pearson product-moment; association including Chi-squared tests and goodness of fit; multivariate testing using analysis of variance (ANOVA) and Kruskal–Wallis test; and multiple regression. Key skills taught in this book include: how to plan ecological projects; how to record and assemble your data; how to use R and Excel for data analysis and graphs; how to carry out a wide range of statistical analyses including analysis of variance and regression; how to create professional looking graphs; and how to present your results. New in this edition: a completely revised chapter on graphics including graph types and their uses, Excel Chart Tools, R graphics commands and producing different chart types in Excel and in R; an expanded range of support material online, including; example data, exercises and additional notes & explanations; a new chapter on basic community statistics, biodiversity and similarity; chapter summaries and end-of-chapter exercises. Praise for the first edition: This book is a superb way in for all those looking at how to design investigations and collect data to support their findings. – Sue Townsend, Biodiversity Learning Manager, Field Studies Council [M]akes it easy for the reader to synthesise R and Excel and there is extra help and sample data available on the free companion webpage if needed. I recommended this text to the university library as well as to colleagues at my student workshops on R. Although I initially bought this book when I wanted to discover R I actually also learned new techniques for data manipulation and management in Excel – Mark Edwards, EcoBlogging A must for anyone getting to grips with data analysis using R and excel. – Amazon 5-star review It has been very easy to follow and will be perfect for anyone. – Amazon 5-star review A solid introduction to working with Excel and R. The writing is clear and informative, the book provides plenty of examples and figures so that each string of code in R or step in Excel is understood by the reader. – Goodreads, 4-star review |
datasets for correlation analysis: Practical Data Science Programming for Medical Datasets Analysis and Prediction with Python GUI Vivian Siahaan, Rismon Hasiholan Sianipar, 2023-06-23 In this book, you will implement two data science projects using Scikit-Learn, Scipy, and other libraries with Python GUI. In chapter 1, you will learn how to use Scikit-Learn, SVM, NumPy, Pandas, and other libraries to perform how to predict early stage diabetes using Early Stage Diabetes Risk Prediction Dataset (https://viviansiahaan.blogspot.com/2023/06/practical-data-science-programming-for.html). This dataset contains the sign and symptom data of newly diabetic or would be diabetic patient. This has been collected using direct questionnaires from the patients of Sylhet Diabetes Hospital in Sylhet, Bangladesh and approved by a doctor. The dataset consist of total 15 features and one target variable named class. Age: Age in years ranging from (20years to 65 years); Gender: Male / Female; Polyuria: Yes / No; Polydipsia: Yes/ No; Sudden weight loss: Yes/ No; Weakness: Yes/ No; Polyphagia: Yes/ No; Genital Thrush: Yes/ No; Visual blurring: Yes/ No; Itching: Yes/ No; Irritability: Yes/No; Delayed healing: Yes/ No; Partial Paresis: Yes/ No; Muscle stiffness: yes/ No; Alopecia: Yes/ No; Obesity: Yes/ No; This dataset contains the sign and symptpom data of newly diabetic or would be diabetic patient. This has been collected using direct questionnaires from the patients of Sylhet Diabetes Hospital in Sylhet, Bangladesh and approved by a doctor. You will develop a GUI using PyQt5 to plot distribution of features, feature importance, cross validation score, and prediced values versus true values. The machine learning models used in this project are Adaboost, Random Forest, Gradient Boosting, Logistic Regression, and Support Vector Machine. In chapter 2, you will learn how to use Scikit-Learn, NumPy, Pandas, and other libraries to perform how to analyze and predict breast cancer using Breast Cancer Prediction Dataset (https://viviansiahaan.blogspot.com/2023/06/practical-data-science-programming-for.html). Worldwide, breast cancer is the most common type of cancer in women and the second highest in terms of mortality rates.Diagnosis of breast cancer is performed when an abnormal lump is found (from self-examination or x-ray) or a tiny speck of calcium is seen (on an x-ray). After a suspicious lump is found, the doctor will conduct a diagnosis to determine whether it is cancerous and, if so, whether it has spread to other parts of the body. This breast cancer dataset was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. You will develop a GUI using PyQt5 to plot distribution of features, pairwise relationship, test scores, prediced values versus true values, confusion matrix, and decision boundary. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, and Support Vector Machine. |
datasets for correlation analysis: Advances in Intelligent Data Analysis XXI Bruno Crémilleux, Sibylle Hess, Siegfried Nijssen, 2023-03-31 This book constitutes the proceedings of the 21st International Symposium on Intelligent Data Analysis, IDA 2022, which was held in Louvain-la-Neuve, Belgium, during April 12-14, 2023. The 38 papers included in this book were carefully reviewed and selected from 91 submissions. IDA is an international symposium presenting advances in the intelligent analysis of data. Distinguishing characteristics of IDA are its focus on novel, inspiring ideas, its focus on research, and its relatively small scale. |
datasets for correlation analysis: Secondary Analysis of Electronic Health Records MIT Critical Data, 2016-09-09 This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients. |
datasets for correlation analysis: Encyclopedia of Epidemiology Sarah Boslaugh, 2008 Presents information from the field of epidemiology in a less technical, more accessible format. Covers major topics in epidemiology, from risk ratios to case-control studies to mediating and moderating variables, and more. Relevant topics from related fields such as biostatistics and health economics are also included. |
datasets for correlation analysis: Applied Predictive Modeling Max Kuhn, Kjell Johnson, 2013-05-17 Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. The text illustrates all parts of the modeling process through many hands-on, real-life examples, and every chapter contains extensive R code for each step of the process. This multi-purpose text can be used as an introduction to predictive models and the overall modeling process, a practitioner’s reference handbook, or as a text for advanced undergraduate or graduate level predictive modeling courses. To that end, each chapter contains problem sets to help solidify the covered concepts and uses data available in the book’s R package. This text is intended for a broad audience as both an introduction to predictive models as well as a guide to applying them. Non-mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. |
datasets for correlation analysis: Smart Data Intelligence R. Asokan, Diego P. Ruiz, Zubair A. Baig, Selwyn Piramuthu, 2022-08-17 This book presents high-quality research papers presented at 2nd International Conference on Smart Data Intelligence (ICSMDI 2022) organized by Kongunadu College of Engineering and Technology at Trichy, Tamil Nadu, India, during April 2022. This book brings out the new advances and research results in the fields of algorithmic design, data analysis, and implementation on various real-time applications. It discusses many emerging related fields like big data, data science, artificial intelligence, machine learning, and deep learning which have deployed a paradigm shift in various data-driven approaches that tends to evolve new data-driven research opportunities in various influential domains like social networks, healthcare, information, and communication applications. |
datasets for correlation analysis: Practical Statistics David Kremelberg, 2010-03-18 Making statistics—and statistical software—accessible and rewarding This book provides readers with step-by-step guidance on running a wide variety of statistical analyses in IBM® SPSS® Statistics, Stata, and other programs. Author David Kremelberg begins his user-friendly text by covering charts and graphs through regression, time-series analysis, and factor analysis. He provides a background of the method, then explains how to run these tests in IBM SPSS and Stata. He then progresses to more advanced kinds of statistics such as HLM and SEM, where he describes the tests and explains how to run these tests in their appropriate software including HLM and AMOS. This is an invaluable guide for upper-level undergraduate and graduate students across the social and behavioral sciences who need assistance in understanding the various statistical packages. |
datasets for correlation analysis: The Development of Open Government Data Di Wang, Deborah Richards, Ayse Aysin Bilgin, Chuanfu Chen, 2022-07-15 Providing a unique and enhanced theoretical and practical understanding of OGD and its usage, as well as proposing directions for OGD portals’ future development in order to encourage citizens’ OGD utilization, this is a must-read for researchers and policymakers examining the impact and possibilities of OGD. |
datasets for correlation analysis: Robust Correlation Georgy L. Shevlyakov, Hannu Oja, 2016-09-19 This bookpresents material on both the analysis of the classical concepts of correlation and on the development of their robust versions, as well as discussing the related concepts of correlation matrices, partial correlation, canonical correlation, rank correlations, with the corresponding robust and non-robust estimation procedures. Every chapter contains a set of examples with simulated and real-life data. Key features: Makes modern and robust correlation methods readily available and understandable to practitioners, specialists, and consultants working in various fields. Focuses on implementation of methodology and application of robust correlation with R. Introduces the main approaches in robust statistics, such as Huber’s minimax approach and Hampel’s approach based on influence functions. Explores various robust estimates of the correlation coefficient including the minimax variance and bias estimates as well as the most B- and V-robust estimates. Contains applications of robust correlation methods to exploratory data analysis, multivariate statistics, statistics of time series, and to real-life data. Includes an accompanying website featuring computer code and datasets Features exercises and examples throughout the text using both small and large data sets. Theoretical and applied statisticians, specialists in multivariate statistics, robust statistics, robust time series analysis, data analysis and signal processing will benefit from this book. Practitioners who use correlation based methods in their work as well as postgraduate students in statistics will also find this book useful. |
datasets for correlation analysis: Datasets for Brain-Computer Interface Applications Ian Daly, Ana Matran-Fernandez, Davide Valeriani, Mikhail Lebedev, Andrea Kübler, 2021-11-25 |
datasets for correlation analysis: Statistical Ideas and Methods Jessica M. Utts, Robert F. Heckard, 2006 Student CD-ROM contains lab manuals, applets, data sets, presentation slides, Web resources, and tutorial quiz; Interactive video skillbuilder CD-ROM contains video instruction on key examples from the text. |
datasets for correlation analysis: Advanced Methods for Complex Network Analysis Meghanathan, Natarajan, 2016-04-07 As network science and technology continues to gain popularity, it becomes imperative to develop procedures to examine emergent network domains, as well as classical networks, to help ensure their overall optimization. Advanced Methods for Complex Network Analysis features the latest research on the algorithms and analysis measures being employed in the field of network science. Highlighting the application of graph models, advanced computation, and analytical procedures, this publication is a pivotal resource for students, faculty, industry practitioners, and business professionals interested in theoretical concepts and current developments in network domains. |
datasets for correlation analysis: Foundations of Intelligent Systems Aijun An, Stan Matwin, Zbigniew W Ras, Dominik Slezak, 2008-05-08 This volume contains the papers selected for presentation at the 17th Inter- tional Symposium on Methodologies for Intelligent Systems (ISMIS 2008), held in York University, Toronto, Canada, May 21–23, 2008. ISMIS is a conference series started in 1986. Held twice every three years, ISMIS provides an inter- tional forum for exchanging scienti?c research and technological achievements in building intelligent systems. Its goal is to achieve a vibrant interchange - tween researchers and practitioners on fundamental and advanced issues related to intelligent systems. ISMIS 2008featureda selectionof latestresearchworkandapplicationsfrom the following areas related to intelligent systems: active media human–computer interaction, autonomic and evolutionary computation, digital libraries, intel- gent agent technology, intelligent information retrieval, intelligent information systems, intelligent language processing, knowledge representation and integ- tion, knowledge discovery and data mining, knowledge visualization, logic for arti?cial intelligence, soft computing, Web intelligence, and Web services. - searchers and developers from 29 countries submitted more than 100 full - pers to the conference. Each paper was rigorously reviewed by three committee members and external reviewers. Out of these submissions, 40% were selected as regular papers and 22% as short papers. ISMIS 2008 also featured three plenary talks given by John Mylopoulos, Jiawei Han and Michael Lowry. They spoke on their recent research in age- oriented software engineering, information network mining, and intelligent so- ware engineering tools, respectively. |
datasets for correlation analysis: Proceedings Thierry Vidal, Paolo Liberatore, 2002 |
datasets for correlation analysis: Applied Informatics for Industry 4.0 Nazmul Siddique, Mohammad Shamsul Arefin, Julie Wall, M Shamim Kaiser, 2023-02-17 Applied Informatics for Industry 4.0 combines the technologies of computer science and information science to assist in the management and processing of data to provide different types of services. Due to the adaptation of 4.0 IR-related technologies, applied informatics is playing a vital role in different sectors such as healthcare, complex system design and privacy-related issues. This book focuses on cutting edge research from the fields of informatics and complex industrial systems, and will cover topics including health informatics, bioinformatics, brain informatics, genomics and proteomics, data and network security and more. The text will appeal to beginners and advanced researchers in the fields of computer science, information sciences, electrical and electronic engineering and robotics. |
datasets for correlation analysis: Traditional and Up-to-date Genomic Insights into Domestic Animal Diversity Johann Sölkner, Michael N. Romanov, Natalia A. Zinovieva, Steffen Weigend, Klaus Wimmers, 2023-02-01 |
datasets for correlation analysis: Statistics for People Who (Think They) Hate Statistics Neil J. Salkind, 2007 Now in its third edition, this title teaches an often intimidating and difficult subject in a way that is informative, personable, and clear. |
datasets for correlation analysis: Statistical Questions from the Classroom Michael Shaughnessy, Beth L. Chance, 2005 Consists of eleven short discussions of frequently asked questions about statistics raised by students and by classroom teachers. Offers teachers of statistics some insight and support in understanding these issues and explaining these ideas to their own students--Provided by publisher. |
datasets for correlation analysis: Fundamentals of Data Visualization Claus O. Wilke, 2019-03-18 Effective visualization is the best way to communicate information from the increasingly large and complex datasets in the natural and social sciences. But with the increasing power of visualization software today, scientists, engineers, and business analysts often have to navigate a bewildering array of visualization choices and options. This practical book takes you through many commonly encountered visualization problems, and it provides guidelines on how to turn large datasets into clear and compelling figures. What visualization type is best for the story you want to tell? How do you make informative figures that are visually pleasing? Author Claus O. Wilke teaches you the elements most critical to successful data visualization. Explore the basic concepts of color as a tool to highlight, distinguish, or represent a value Understand the importance of redundant coding to ensure you provide key information in multiple ways Use the book’s visualizations directory, a graphical guide to commonly used types of data visualizations Get extensive examples of good and bad figures Learn how to use figures in a document or report and how employ them effectively to tell a compelling story |
datasets for correlation analysis: The Dictionary of Artificial Intelligence Utku Taşova, 2023-11-03 Unveiling the Future: Your Portal to Artificial Intelligence Proficiency In the epoch of digital metamorphosis, Artificial Intelligence (AI) stands as the vanguard of a new dawn, a nexus where human ingenuity intertwines with machine precision. As we delve deeper into this uncharted realm, the boundary between the conceivable and the fantastical continually blurs, heralding a new era of endless possibilities. The Dictionary of Artificial Intelligence, embracing a compendium of 3,300 meticulously curated titles, endeavors to be the torchbearer in this journey of discovery, offering a wellspring of knowledge to both the uninitiated and the adept. Embarking on the pages of this dictionary is akin to embarking on a voyage through the vast and often turbulent seas of AI. Each entry serves as a beacon, illuminating complex terminologies, core principles, and the avant-garde advancements that characterize this dynamic domain. The dictionary is more than a mere compilation of terms; it's a labyrinth of understanding waiting to be traversed. The Dictionary of Artificial Intelligence is an endeavor to demystify the arcane, to foster a shared lexicon that enhances collaboration, innovation, and comprehension across the AI community. It's a mission to bridge the chasm between ignorance and insight, to unravel the intricacies of AI that often seem enigmatic to the outsiders. This profound reference material transcends being a passive repository of terms; it’s an engagement with the multifaceted domain of artificial intelligence. Each title encapsulated within these pages is a testament to the audacity of human curiosity and the unyielding quest for advancement that propels the AI domain forward. The Dictionary of Artificial Intelligence is an invitation to delve deeper, to grapple with the lexicon of a field that stands at the cusp of redefining the very fabric of society. It's a conduit through which the curious become enlightened, the proficient become masters, and the innovators find inspiration. As you traverse through the entries of The Dictionary of Artificial Intelligence, you are embarking on a journey of discovery. A journey that not only augments your understanding but also ignites the spark of curiosity and the drive for innovation that are quintessential in navigating the realms of AI. We beckon you to commence this educational expedition, to explore the breadth and depth of AI lexicon, and to emerge with a boundless understanding and an unyielding resolve to contribute to the ever-evolving narrative of artificial intelligence. Through The Dictionary of Artificial Intelligence, may your quest for knowledge be as boundless and exhilarating as the domain it explores. |
datasets for correlation analysis: Correlation and Regression Philip Bobko, 2001-04-10 . . . the writing makes this book interesting to all levels of students. Bobko tackles tough issues in an easy way but provides references for more complex and complete treatment of the subject. . . . there is a familiarity and love of the material that radiates through the words. --Malcolm James Ree, ORGANIZATIONAL RESEARCH METHODS, April 2002 This book provides one of the clearest treatments of correlations and regression of any statistics book I have seen. . . . Bobko has achieved his objective of making the topics of correlation and regression accessible to students. . . . For someone looking for a very clearly written treatment of applied correlation and regression, this book would be an excellent choice. --Paul E. Spector, University of South Florida As a quantitative methods instructor, I have reviewed and used many statistical textbooks. This textbook and approach is one of the very best when it comes to user-friendliness, approachability, clarity, and practical utility. --Steven G. Rogelberg, Bowling Green State University Building on the classical examples in the first edition, this updated edition provides students with an accessible textbook on statistical theories in correlation and regression. Taking an applied approach, the author uses concrete examples to help the student thoroughly understand how statistical techniques work and how to creatively apply them based on specific circumstances they face in the real world. The author uses a layered approach in each chapter, first offering the student an intuitive understanding of the problems or examples and progressing through to the underlying statistics. This layered approach and the applied examples provide students with the foundation and reasoning behind each technique, so they will be able to use their own judgement to effectively choose from the alternative data analytic options. |
datasets for correlation analysis: Machine Learning Methods with Noisy, Incomplete or Small Datasets Jordi Solé-Casals, Zhe Sun, Cesar F. Caiafa, Toshihisa Tanaka, 2021-08-17 Over the past years, businesses have had to tackle the issues caused by numerous forces from political, technological and societal environment. The changes in the global market and increasing uncertainty require us to focus on disruptive innovations and to investigate this phenomenon from different perspectives. The benefits of innovations are related to lower costs, improved efficiency, reduced risk, and better response to the customers’ needs due to new products, services or processes. On the other hand, new business models expose various risks, such as cyber risks, operational risks, regulatory risks, and others. Therefore, we believe that the entrepreneurial behavior and global mindset of decision-makers significantly contribute to the development of innovations, which benefit by closing the prevailing gap between developed and developing countries. Thus, this Special Issue contributes to closing the research gap in the literature by providing a platform for a scientific debate on innovation, internationalization and entrepreneurship, which would facilitate improving the resilience of businesses to future disruptions. Order Your Print Copy |
datasets for correlation analysis: Artificial intelligence-based medical image automatic diagnosis and prognosis prediction Junchi Yan, Yukun Lai, Yi Xu, Yinqiang Zheng, Zhibin Niu, Tao Tan, 2023-06-27 |
datasets for correlation analysis: Correlation of Modelled Atmospheric Deposition of Cadmium, Mercury and Lead with the Measured Enrichment of these Elements in Moss Stefan Nickel, Winfried Schröder, Ilia Ilyin, Oleg Travnikov, 2023-04-28 The book provides a unique analysis of current air pollution in Germany by correlating results from chemical transport modelling and accumulation monitoring by moss.Results of most recent modelling of atmospheric concentration and deposition of the metal elements Cd, Hg and Pb are compared with the results of technical measurements and bioindication with mosses. These modelling results with status 2020 have a higher spatial resolution of 0.1° x 0.1° than the modelling results valid up to then (50 km x 50 km). This leads to partly slightly higher correlations between the findings of the modelling and those of the moss monitoring. In this study, descriptive and correlation-statistical parameters are calculated, results and recommendations drawn described. A statistically adequately deepened analysis and evaluation of the highresolution modelling results requires additional methodological tools, which are outlined in summary. It is particularly important to link the exposure data from modelling, technical measurements and the findings from moss monitoring with information on the receptors, the ecosystem types. This is the only way to ensure that the results of the present project contribute to a more differentiated assessment of the impacts on ecosystems from atmospheric heavy metal deposition than has been the case to date, thus enabling a targeted further development of risk assessments for German |
datasets for correlation analysis: Good Practices and New Perspectives in Information Systems and Technologies Álvaro Rocha, |
datasets for correlation analysis: An Introduction to Applied Multivariate Analysis with R Brian Everitt, Torsten Hothorn, 2011-04-23 The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data. |
GitHub - huggingface/datasets: The largest hub of ready-to-use ...
🤗 Datasets is a lightweight library providing two main features: one-line dataloaders for many public datasets: one-liners to download and pre-process any of the major public datasets (image …
datasets · GitHub Topics · GitHub
Jun 5, 2025 · TorchGeo: datasets, samplers, transforms, and pre-trained models for geospatial data computer-vision deep-learning geospatial models pytorch remote-sensing satellite-imagery …
Curated open data · GitHub
datasets/s-and-p-500-companies-financials’s past year of commit activity. HTML 68 84 2 1 Updated Jun 10, ...
deep-learning-datasets · GitHub Topics · GitHub
Jan 31, 2024 · Effortlessly gather image data for your deep learning projects using this repository. With Selenium and Python, explore a robust web-scraping solution designed for acquiring …
datasets/awesome-data: Curated list of quality open datasets
The awesome section presents collections of high quality datasets organized by topic. Home page for awesome collections is located in the awesome-data repository on github and should be …
easy-dataset/README.zh-CN.md at main - GitHub
A powerful tool for creating fine-tuning datasets for LLM - ConardLi/easy-dataset
ConardLi/easy-dataset - GitHub
Domain Labels: Intelligently builds global domain labels for datasets, with global understanding capabilities; Answer Generation: Uses LLM API to generate comprehensive answers and Chain of …
GitHub - unsplash/datasets: 6,500,000+ Unsplash images made …
The Unsplash Dataset is offered in two datasets: the Lite dataset: available for commercial and noncommercial usage, containing 25k nature-themed Unsplash photos, 25k keywords, and 1M …
Datasets For Recommender Systems - GitHub
In order to use RecBole, you need to convert these original datasets to the atomic file which is a kind of data format defined by RecBole. We provide two ways to convert these datasets into …
Toolkit for linearizing PDFs for LLM datasets/training
Toolkit for linearizing PDFs for LLM datasets/training - allenai/olmocr
GitHub - huggingface/datasets: The largest hub of ready-to-use ...
🤗 Datasets is a lightweight library providing two main features: one-line dataloaders for many public datasets: one-liners to download and pre-process any of the major public datasets (image …
datasets · GitHub Topics · GitHub
Jun 5, 2025 · TorchGeo: datasets, samplers, transforms, and pre-trained models for geospatial data computer-vision deep-learning geospatial models pytorch remote-sensing satellite …
Curated open data · GitHub
datasets/s-and-p-500-companies-financials’s past year of commit activity. HTML 68 84 2 1 Updated Jun 10, ...
deep-learning-datasets · GitHub Topics · GitHub
Jan 31, 2024 · Effortlessly gather image data for your deep learning projects using this repository. With Selenium and Python, explore a robust web-scraping solution designed for acquiring …
datasets/awesome-data: Curated list of quality open datasets
The awesome section presents collections of high quality datasets organized by topic. Home page for awesome collections is located in the awesome-data repository on github and should be …
easy-dataset/README.zh-CN.md at main - GitHub
A powerful tool for creating fine-tuning datasets for LLM - ConardLi/easy-dataset
ConardLi/easy-dataset - GitHub
Domain Labels: Intelligently builds global domain labels for datasets, with global understanding capabilities; Answer Generation: Uses LLM API to generate comprehensive answers and …
GitHub - unsplash/datasets: 6,500,000+ Unsplash images made …
The Unsplash Dataset is offered in two datasets: the Lite dataset: available for commercial and noncommercial usage, containing 25k nature-themed Unsplash photos, 25k keywords, and 1M …
Datasets For Recommender Systems - GitHub
In order to use RecBole, you need to convert these original datasets to the atomic file which is a kind of data format defined by RecBole. We provide two ways to convert these datasets into …
Toolkit for linearizing PDFs for LLM datasets/training
Toolkit for linearizing PDFs for LLM datasets/training - allenai/olmocr