Advertisement
deduction method discrete math: Discrete Mathematics Oscar Levin, 2016-08-16 This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the introduction to proof course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions. |
deduction method discrete math: What Truth is Mark Jago, 2018 Mark Jago offers a new metaphysical account of truth. He argues that to be true is to be made true by the existence of a suitable worldly entity. Truth arises as a relation between a proposition - the content of our sayings, thoughts, beliefs, and so on - and an entity (or entities) in the world. |
deduction method discrete math: A Logical Approach to Discrete Math David Gries, Fred B. Schneider, 2013-03-14 Here, the authors strive to change the way logic and discrete math are taught in computer science and mathematics: while many books treat logic simply as another topic of study, this one is unique in its willingness to go one step further. The book traets logic as a basic tool which may be applied in essentially every other area. |
deduction method discrete math: Discrete Mathematics for Computer Science Gary Haggard, John Schlipf, Sue Whitesides, 2006 Master the fundamentals of discrete mathematics with DISCRETE MATHEMATICS FOR COMPUTER SCIENCE with Student Solutions Manual CD-ROM! An increasing number of computer scientists from diverse areas are using discrete mathematical structures to explain concepts and problems and this mathematics text shows you how to express precise ideas in clear mathematical language. Through a wealth of exercises and examples, you will learn how mastering discrete mathematics will help you develop important reasoning skills that will continue to be useful throughout your career. |
deduction method discrete math: Mathematical Logic Joseph R. Shoenfield, 2018-05-02 This classic introduction to the main areas of mathematical logic provides the basis for a first graduate course in the subject. It embodies the viewpoint that mathematical logic is not a collection of vaguely related results, but a coherent method of attacking some of the most interesting problems, which face the mathematician. The author presents the basic concepts in an unusually clear and accessible fashion, concentrating on what he views as the central topics of mathematical logic: proof theory, model theory, recursion theory, axiomatic number theory, and set theory. There are many exercises, and they provide the outline of what amounts to a second book that goes into all topics in more depth. This book has played a role in the education of many mature and accomplished researchers. |
deduction method discrete math: Introduction to Mathematical Logic Elliot Mendelsohn, 2012-12-06 This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from Cantor's paradise (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees. |
deduction method discrete math: Essentials of Discrete Mathematics David J. Hunter, 2015-08-21 Written for the one-term course, the Third Edition of Essentials of Discrete Mathematics is designed to serve computer science majors as well as students from a wide range of disciplines. The material is organized around five types of thinking: logical, relational, recursive, quantitative, and analytical. This presentation results in a coherent outline that steadily builds upon mathematical sophistication. Graphs are introduced early and referred to throughout the text, providing a richer context for examples and applications. tudents will encounter algorithms near the end of the text, after they have acquired the skills and experience needed to analyze them. The final chapter contains in-depth case studies from a variety of fields, including biology, sociology, linguistics, economics, and music. |
deduction method discrete math: Discrete Mathematics with Proof Eric Gossett, 2009-06-22 A Trusted Guide to Discrete Mathematics with Proof?Now in a Newly Revised Edition Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. The book begins with an introductory chapter that provides an accessible explanation of discrete mathematics. Subsequent chapters explore additional related topics including counting, finite probability theory, recursion, formal models in computer science, graph theory, trees, the concepts of functions, and relations. Additional features of the Second Edition include: An intense focus on the formal settings of proofs and their techniques, such as constructive proofs, proof by contradiction, and combinatorial proofs New sections on applications of elementary number theory, multidimensional induction, counting tulips, and the binomial distribution Important examples from the field of computer science presented as applications including the Halting problem, Shannon's mathematical model of information, regular expressions, XML, and Normal Forms in relational databases Numerous examples that are not often found in books on discrete mathematics including the deferred acceptance algorithm, the Boyer-Moore algorithm for pattern matching, Sierpinski curves, adaptive quadrature, the Josephus problem, and the five-color theorem Extensive appendices that outline supplemental material on analyzing claims and writing mathematics, along with solutions to selected chapter exercises Combinatorics receives a full chapter treatment that extends beyond the combinations and permutations material by delving into non-standard topics such as Latin squares, finite projective planes, balanced incomplete block designs, coding theory, partitions, occupancy problems, Stirling numbers, Ramsey numbers, and systems of distinct representatives. A related Web site features animations and visualizations of combinatorial proofs that assist readers with comprehension. In addition, approximately 500 examples and over 2,800 exercises are presented throughout the book to motivate ideas and illustrate the proofs and conclusions of theorems. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics. |
deduction method discrete math: Proofs from THE BOOK Martin Aigner, Günter M. Ziegler, 2013-06-29 According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such perfect proofs, those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics. |
deduction method discrete math: A Spiral Workbook for Discrete Mathematics Harris Kwong, 2015-11-06 A Spiral Workbook for Discrete Mathematics covers the standard topics in a sophomore-level course in discrete mathematics: logic, sets, proof techniques, basic number theory, functions,relations, and elementary combinatorics, with an emphasis on motivation. The text explains and claries the unwritten conventions in mathematics, and guides the students through a detailed discussion on how a proof is revised from its draft to a nal polished form. Hands-on exercises help students understand a concept soon after learning it. The text adopts a spiral approach: many topics are revisited multiple times, sometimes from a dierent perspective or at a higher level of complexity, in order to slowly develop the student's problem-solving and writing skills. |
deduction method discrete math: Proof Theory and Automated Deduction Jean Goubault-Larrecq, Ian Mackie, 1997 This text covers basic notions in logic, with a particular stress on proof theory, as opposed to, for example, model theory or set theory. It shows how they are applied in computer science, and especially the particular field of automated deduction. That is to say, the automated search for proofs of mathematical propositions. |
deduction method discrete math: Finite and Discrete Math Problem Solver Research & Education Association Editors, Lutfi A. Lutfiyya, 2012-09-05 h Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies. Here in this highly useful reference is the finest overview of finite and discrete math currently available, with hundreds of finite and discrete math problems that cover everything from graph theory and statistics to probability and Boolean algebra. Each problem is clearly solved with step-by-step detailed solutions. DETAILS - The PROBLEM SOLVERS are unique - the ultimate in study guides. - They are ideal for helping students cope with the toughest subjects. - They greatly simplify study and learning tasks. - They enable students to come to grips with difficult problems by showing them the way, step-by-step, toward solving problems. As a result, they save hours of frustration and time spent on groping for answers and understanding. - They cover material ranging from the elementary to the advanced in each subject. - They work exceptionally well with any text in its field. - PROBLEM SOLVERS are available in 41 subjects. - Each PROBLEM SOLVER is prepared by supremely knowledgeable experts. - Most are over 1000 pages. - PROBLEM SOLVERS are not meant to be read cover to cover. They offer whatever may be needed at a given time. An excellent index helps to locate specific problems rapidly. TABLE OF CONTENTS Introduction Chapter 1: Logic Statements, Negations, Conjunctions, and Disjunctions Truth Table and Proposition Calculus Conditional and Biconditional Statements Mathematical Induction Chapter 2: Set Theory Sets and Subsets Set Operations Venn Diagram Cartesian Product Applications Chapter 3: Relations Relations and Graphs Inverse Relations and Composition of Relations Properties of Relations Equivalence Relations Chapter 4: Functions Functions and Graphs Surjective, Injective, and Bijective Functions Chapter 5: Vectors and Matrices Vectors Matrix Arithmetic The Inverse and Rank of a Matrix Determinants Matrices and Systems of Equations, Cramer's Rule Special Kinds of Matrices Chapter 6: Graph Theory Graphs and Directed Graphs Matrices and Graphs Isomorphic and Homeomorphic Graphs Planar Graphs and Colorations Trees Shortest Path(s) Maximum Flow Chapter 7: Counting and Binomial Theorem Factorial Notation Counting Principles Permutations Combinations The Binomial Theorem Chapter 8: Probability Probability Conditional Probability and Bayes' Theorem Chapter 9: Statistics Descriptive Statistics Probability Distributions The Binomial and Joint Distributions Functions of Random Variables Expected Value Moment Generating Function Special Discrete Distributions Normal Distributions Special Continuous Distributions Sampling Theory Confidence Intervals Point Estimation Hypothesis Testing Regression and Correlation Analysis Non-Parametric Methods Chi-Square and Contingency Tables Miscellaneous Applications Chapter 10: Boolean Algebra Boolean Algebra and Boolean Functions Minimization Switching Circuits Chapter 11: Linear Programming and the Theory of Games Systems of Linear Inequalities Geometric Solutions and Dual of Linear Programming Problems The Simplex Method Linear Programming - Advanced Methods Integer Programming The Theory of Games Index WHAT THIS BOOK IS FOR Students have generally found finite and discrete math difficult subjects to understand and learn. Despite the publication of hundreds of textbooks in this field, each one intended to provide an improvement over previous textbooks, students of finite and discrete math continue to remain perplexed as a result of numerous subject areas that must be remembered and correlated when solving problems. Various interpretations of finite and discrete math terms also contribute to the difficulties of mastering the subject. In a study of finite and discrete math, REA found the following basic reasons underlying the inherent difficulties of finite and discrete math: No systematic rules of analysis were ever developed to follow in a step-by-step manner to solve typically encountered problems. This results from numerous different conditions and principles involved in a problem that leads to many possible different solution methods. To prescribe a set of rules for each of the possible variations would involve an enormous number of additional steps, making this task more burdensome than solving the problem directly due to the expectation of much trial and error. Current textbooks normally explain a given principle in a few pages written by a finite and discrete math professional who has insight into the subject matter not shared by others. These explanations are often written in an abstract manner that causes confusion as to the principle's use and application. Explanations then are often not sufficiently detailed or extensive enough to make the reader aware of the wide range of applications and different aspects of the principle being studied. The numerous possible variations of principles and their applications are usually not discussed, and it is left to the reader to discover this while doing exercises. Accordingly, the average student is expected to rediscover that which has long been established and practiced, but not always published or adequately explained. The examples typically following the explanation of a topic are too few in number and too simple to enable the student to obtain a thorough grasp of the involved principles. The explanations do not provide sufficient basis to solve problems that may be assigned for homework or given on examinations. Poorly solved examples such as these can be presented in abbreviated form which leaves out much explanatory material between steps, and as a result requires the reader to figure out the missing information. This leaves the reader with an impression that the problems and even the subject are hard to learn - completely the opposite of what an example is supposed to do. Poor examples are often worded in a confusing or obscure way. They might not state the nature of the problem or they present a solution, which appears to have no direct relation to the problem. These problems usually offer an overly general discussion - never revealing how or what is to be solved. Many examples do not include accompanying diagrams or graphs, denying the reader the exposure necessary for drawing good diagrams and graphs. Such practice only strengthens understanding by simplifying and organizing finite and discrete math processes. Students can learn the subject only by doing the exercises themselves and reviewing them in class, obtaining experience in applying the principles with their different ramifications. In doing the exercises by themselves, students find that they are required to devote considerable more time to finite and discrete math than to other subjects, because they are uncertain with regard to the selection and application of the theorems and principles involved. It is also often necessary for students to discover those tricks not revealed in their texts (or review books) that make it possible to solve problems easily. Students must usually resort to methods of trial and error to discover these tricks, therefore finding out that they may sometimes spend several hours to solve a single problem. When reviewing the exercises in classrooms, instructors usually request students to take turns in writing solutions on the boards and explaining them to the class. Students often find it difficult to explain in a manner that holds the interest of the class, and enables the remaining students to follow the material written on the boards. The remaining students in the class are thus too occupied with copying the material off the boards to follow the professor's explanations. This book is intended to aid students in finite and discrete math overcome the difficulties described by supplying detailed illustrations of the solution methods that are usually not apparent to students. Solution methods are illustrated by problems that have been selected from those most often assigned for class work and given on examinations. The problems are arranged in order of complexity to enable students to learn and understand a particular topic by reviewing the problems in sequence. The problems are illustrated with detailed, step-by-step explanations, to save the students large amounts of time that is often needed to fill in the gaps that are usually found between steps of illustrations in textbooks or review/outline books. The staff of REA considers finite and discrete math a subject that is best learned by allowing students to view the methods of analysis and solution techniques. This learning approach is similar to that practiced in various scientific laboratories, particularly in the medical fields. In using this book, students may review and study the illustrated problems at their own pace; students are not limited to the time such problems receive in the classroom. When students want to look up a particular type of problem and solution, they can readily locate it in the book by referring to the index that has been extensively prepared. It is also possible to locate a particular type of problem by glancing at just the material within the boxed portions. Each problem is numbered and surrounded by a heavy black border for speedy identification. |
deduction method discrete math: Mathematical Logic George Tourlakis, 2011-03-01 A comprehensive and user-friendly guide to the use of logic in mathematical reasoning Mathematical Logic presents a comprehensive introduction to formal methods of logic and their use as a reliable tool for deductive reasoning. With its user-friendly approach, this book successfully equips readers with the key concepts and methods for formulating valid mathematical arguments that can be used to uncover truths across diverse areas of study such as mathematics, computer science, and philosophy. The book develops the logical tools for writing proofs by guiding readers through both the established Hilbert style of proof writing, as well as the equational style that is emerging in computer science and engineering applications. Chapters have been organized into the two topical areas of Boolean logic and predicate logic. Techniques situated outside formal logic are applied to illustrate and demonstrate significant facts regarding the power and limitations of logic, such as: Logic can certify truths and only truths. Logic can certify all absolute truths (completeness theorems of Post and Gödel). Logic cannot certify all conditional truths, such as those that are specific to the Peano arithmetic. Therefore, logic has some serious limitations, as shown through Gödel's incompleteness theorem. Numerous examples and problem sets are provided throughout the text, further facilitating readers' understanding of the capabilities of logic to discover mathematical truths. In addition, an extensive appendix introduces Tarski semantics and proceeds with detailed proofs of completeness and first incompleteness theorems, while also providing a self-contained introduction to the theory of computability. With its thorough scope of coverage and accessible style, Mathematical Logic is an ideal book for courses in mathematics, computer science, and philosophy at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who wish to learn how to use logic in their everyday work. |
deduction method discrete math: Automated Deduction in Geometry Jürgen Richter-Gebert, Dongming Wang, 2001-09-12 This book constitutes the thoroughly refereed post-proceedings of the Third International Workshop on Automated Deduction in Geometry, ADG 2000, held in Zurich, Switzerland, in September 2000. The 16 revised full papers and two invited papers presented were carefully selected for publication during two rounds of reviewing and revision from a total of initially 31 submissions. Among the issues addressed are spatial constraint solving, automated proving of geometric inequalities, algebraic proof, semi-algebraic proofs, geometrical reasoning, computational synthetic geometry, incidence geometry, and nonstandard geometric proofs. |
deduction method discrete math: Deductive Logic Warren Goldfarb, 2003-09-15 This text provides a straightforward, lively but rigorous, introduction to truth-functional and predicate logic, complete with lucid examples and incisive exercises, for which Warren Goldfarb is renowned. |
deduction method discrete math: Mathematical Logic for Computer Science Mordechai Ben-Ari, 2012-12-06 This is a mathematics textbook with theorems and proofs. The choice of topics has been guided by the needs of computer science students. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and yet sufficiently elementary for undergraduates. In order to provide a balanced treatment of logic, tableaux are related to deductive proof systems. The book presents various logical systems and contains exercises. Still further, Prolog source code is available on an accompanying Web site. The author is an Associate Professor at the Department of Science Teaching, Weizmann Institute of Science. |
deduction method discrete math: Discrete Mathematics Rajendra Akerkar, Rupali Akerkar, 2007 Discrete Mathematics provides an introduction to some of the fundamental concepts in modern mathematics. Abundant examples help explain the principles and practices of discrete mathematics. The book intends to cover material required by readers for whom mathematics is just a tool, as well as provide a strong foundation for mathematics majors. The vital role that discrete mathematics plays in computer science is strongly emphasized as well. The book is useful for students and instructors, and also software professionals. |
deduction method discrete math: Foundations of Computation Carol Critchlow, David Eck, 2011 Foundations of Computation is a free textbook for a one-semester course in theoretical computer science. It has been used for several years in a course at Hobart and William Smith Colleges. The course has no prerequisites other than introductory computer programming. The first half of the course covers material on logic, sets, and functions that would often be taught in a course in discrete mathematics. The second part covers material on automata, formal languages and grammar that would ordinarily be encountered in an upper level course in theoretical computer science. |
deduction method discrete math: Handbook of Proof Theory S.R. Buss, 1998-07-09 This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science. |
deduction method discrete math: Book of Proof Richard H. Hammack, 2016-01-01 This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity. |
deduction method discrete math: A Mathematical Introduction to Logic Herbert B. Enderton, 2001-01-23 A Mathematical Introduction to Logic |
deduction method discrete math: Logic and Discrete Mathematics Willem Conradie, Valentin Goranko, Claudette Robinson, 2015-05-08 Solutions manual to accompany Logic and Discrete Mathematics: A Concise Introduction This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade. Written in a clear and reader-friendly style, each section ends with an extensive set of exercises, most of them provided with complete solutions which are available in this accompanying solutions manual. |
deduction method discrete math: A Course in Mathematical Logic for Mathematicians Yu. I. Manin, 2009-10-13 1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery. |
deduction method discrete math: Mathematical Methods in Linguistics Barbara B.H. Partee, A.G. ter Meulen, R. Wall, 1990-04-30 Elementary set theory accustoms the students to mathematical abstraction, includes the standard constructions of relations, functions, and orderings, and leads to a discussion of the various orders of infinity. The material on logic covers not only the standard statement logic and first-order predicate logic but includes an introduction to formal systems, axiomatization, and model theory. The section on algebra is presented with an emphasis on lattices as well as Boolean and Heyting algebras. Background for recent research in natural language semantics includes sections on lambda-abstraction and generalized quantifiers. Chapters on automata theory and formal languages contain a discussion of languages between context-free and context-sensitive and form the background for much current work in syntactic theory and computational linguistics. The many exercises not only reinforce basic skills but offer an entry to linguistic applications of mathematical concepts. For upper-level undergraduate students and graduate students in theoretical linguistics, computer-science students with interests in computational linguistics, logic programming and artificial intelligence, mathematicians and logicians with interests in linguistics and the semantics of natural language. |
deduction method discrete math: Mathematical Foundation of Computer Science Y. N. Singh, 2005 The Interesting Feature Of This Book Is Its Organization And Structure. That Consists Of Systematizing Of The Definitions, Methods, And Results That Something Resembling A Theory. Simplicity, Clarity, And Precision Of Mathematical Language Makes Theoretical Topics More Appealing To The Readers Who Are Of Mathematical Or Non-Mathematical Background. For Quick References And Immediate Attentions3⁄4Concepts And Definitions, Methods And Theorems, And Key Notes Are Presented Through Highlighted Points From Beginning To End. Whenever, Necessary And Probable A Visual Approach Of Presentation Is Used. The Amalgamation Of Text And Figures Make Mathematical Rigors Easier To Understand. Each Chapter Begins With The Detailed Contents, Which Are Discussed Inside The Chapter And Conclude With A Summary Of The Material Covered In The Chapter. Summary Provides A Brief Overview Of All The Topics Covered In The Chapter. To Demonstrate The Principles Better, The Applicability Of The Concepts Discussed In Each Topic Are Illustrated By Several Examples Followed By The Practice Sets Or Exercises. |
deduction method discrete math: Automated Deduction in Geometry Xiao-Shan Gao, Dongming Wang, Lu Yang, 1999-10-13 The Second International Workshop on Automated Deduction in Geometry (ADG ’98) was held in Beijing, China, August 1–3, 1998. An increase of interest in ADG ’98 over the previous workshop ADG ’96 is represented by the notable number of more than 40 participants from ten countries and the strong tech- cal program of 25 presentations, of which two one-hour invited talks were given by Professors Wen-tsun ̈ Wu and Jing-Zhong Zhang. The workshop provided the participants with a well-focused forum for e?ective exchange of new ideas and timely report of research progress. Insight surveys, algorithmic developments, and applications in CAGD/CAD and computer vision presented by active - searchers, together with geometry software demos, shed light on the features of this second workshop. ADG ’98 was hosted by the Mathematics Mechanization Research Center (MMRC) with ?nancial support from the Chinese Academy of Sciences and the French National Center for Scienti?c Research (CNRS), and was organized by the three co-editors of this proceedings volume. The papers contained in the volume were selected, under a strict refereeing procedure, from those presented at ADG ’98 and submitted afterwards. Most of the 14 accepted papers were carefully revised and some of the revised versions were checked again by external reviewers. We hope that these papers cover some of the most recent and signi?cant research results and developments and re?ect the current state-of-the-art of ADG. |
deduction method discrete math: Automated Deduction in Geometry Franz Winkler, 2004-01-28 This book constitutes the thoroughly refereed post-proceedings of the 4th International Workshop on Automated Deduction in Geometry, ADG 2002, held at Hagenberg Castle, Austria in September 2002. The 13 revised full papers presented were carefully selected during two rounds of reviewing and improvement. Among the issues addressed are theoretical and methodological topics, such as the resolution of singularities, algebraic geometry and computer algebra; various geometric theorem proving systems are explored; and applications of automated deduction in geometry are demonstrated in fields like computer-aided design and robotics. |
deduction method discrete math: An Introduction to Measure Theory Terence Tao, 2021-09-03 This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book. |
deduction method discrete math: Mathematics and Computation Avi Wigderson, 2019-10-29 From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography |
deduction method discrete math: Deduction W. Bibel, Steffen Hölldobler, 1993 Deduction: Automated Logic presents the broad topic of automated deductive reasoning in a concise and comprehensive manner. This book features broad coverage of deductive methods on the level of propositional and first-order logic, the strategic aspects of automated deduction, the applications of deduction mechanisms to a range of different areas, and their realization in concrete systems. This book can be used both by readers seeking a broad survey of the area, and by those requiring a reference for more detailed analysis on individual topics. It is an invaluable text for students of artificial intelligence, cognitive science, and theorum- proving at the advanced undergraduate and graduate level. Intended for readers who wish to become familiar with the area as a whole, or with selected topics, in a relatively short time Serves as a reference book for consultation on individual topics Contains one of the most comprehensive collections of different deduction mechanisms which has ever appeared in a single book, all presented in a uniform framework Contains extensive references and exercises Thoroughly cross-referenced |
deduction method discrete math: Discrete Mathematics and Theoretical Computer Science Cristian S. Calude, Michael J. Dinneen, Vincent Vajnovszki, 2007-03-05 The refereed proceedings of the 4th International Conference on Discrete Mathematics and Theoretical Computer Science, DMTCS 2003, held in Dijon, France, in July 2003. The 18 revised full papers presented together with 5 invited papers were carefully reviewed and selected from 35 submissions. A broad variety of topics in discrete mathematics and the theory of computing is addressed including information theory, coding, algorithms, complexity, automata, computational mathematics, combinatorial computations, graph computations, algorithmic geometry, relational methods, game-theoretic methods, combinatorial optimization, and finite state systems. |
deduction method discrete math: Logical Methods Roger Antonsen, 2021-02-11 Many believe mathematics is only about calculations, formulas, numbers, and strange letters. But mathematics is much more than just crunching numbers or manipulating symbols. Mathematics is about discovering patterns, uncovering hidden structures, finding counterexamples, and thinking logically. Mathematics is a way of thinking. It is an activity that is both highly creative and challenging. This book offers an introduction to mathematical reasoning for beginning university or college students, providing a solid foundation for further study in mathematics, computer science, and related disciplines. Written in a manner that directly conveys the sense of excitement and discovery at the heart of doing science, its 25 short and visually appealing chapters cover the basics of set theory, logic, proof methods, combinatorics, graph theory, and much more. In the book you will, among other things, find answers to: What is a proof? What is a counterexample? What does it mean to say that something follows logically from a set of premises? What does it mean to abstract over something? How can knowledge and information be represented and used in calculations? What is the connection between Morse code and Fibonacci numbers? Why could it take billions of years to solve Hanoi's Tower? Logical Methods is especially appropriate for students encountering such concepts for the very first time. Designed to ease the transition to a university or college level study of mathematics or computer science, it also provides an accessible and fascinating gateway to logical thinking for students of all disciplines. |
deduction method discrete math: Logic And Discrete Mathematics: A Computer Science Perspective Grassmann, 2007-09 |
deduction method discrete math: Discrete Mathematics Using a Computer Cordelia Hall, John O'Donnell, 2000 This volume offers a new, hands-on approach to teaching Discrete Mathematics. A simple functional language is used to allow students to experiment with mathematical notations which are traditionally difficult to pick up. This practical approach provides students with instant feedback and also allows lecturers to monitor progress easily. All the material needed to use the book will be available via ftp (the software is freely available and runs on Mac, PC and Unix platforms), including a special module which implements the concepts to be learned.No prior knowledge of Functional Programming is required: apart from List Comprehension (which is comprehensively covered in the text) everything the students need is either provided for them or can be picked up easily as they go along. An Instructors Guide will also be available on the WWW to help lecturers adapt existing courses. |
deduction method discrete math: The Principles of Mathematics Bertrand Russell, 1903 |
deduction method discrete math: Axiomatic Method and Category Theory Andrei Rodin, 2013-10-14 This volume explores the many different meanings of the notion of the axiomatic method, offering an insightful historical and philosophical discussion about how these notions changed over the millennia. The author, a well-known philosopher and historian of mathematics, first examines Euclid, who is considered the father of the axiomatic method, before moving onto Hilbert and Lawvere. He then presents a deep textual analysis of each writer and describes how their ideas are different and even how their ideas progressed over time. Next, the book explores category theory and details how it has revolutionized the notion of the axiomatic method. It considers the question of identity/equality in mathematics as well as examines the received theories of mathematical structuralism. In the end, Rodin presents a hypothetical New Axiomatic Method, which establishes closer relationships between mathematics and physics. Lawvere's axiomatization of topos theory and Voevodsky's axiomatization of higher homotopy theory exemplify a new way of axiomatic theory building, which goes beyond the classical Hilbert-style Axiomatic Method. The new notion of Axiomatic Method that emerges in categorical logic opens new possibilities for using this method in physics and other natural sciences. This volume offers readers a coherent look at the past, present and anticipated future of the Axiomatic Method. |
deduction method discrete math: Discrete Mathematics with Applications, Metric Edition Susanna Epp, 2019 DISCRETE MATHEMATICS WITH APPLICATIONS, 5th Edition, Metric Edition explains complex, abstract concepts with clarity and precision and provides a strong foundation for computer science and upper-level mathematics courses of the computer age. Author Susanna Epp presents not only the major themes of discrete mathematics, but also the reasoning that underlies mathematical thought. Students develop the ability to think abstractly as they study the ideas of logic and proof. While learning about such concepts as logic circuits and computer addition, algorithm analysis, recursive thinking, computability, automata, cryptography and combinatorics, students discover that the ideas of discrete mathematics underlie and are essential to today's science and technology. |
deduction method discrete math: Discrete Structures, Logic, and Computability James L. Hein, 2001 Discrete Structure, Logic, and Computability introduces the beginning computer science student to some of the fundamental ideas and techniques used by computer scientists today, focusing on discrete structures, logic, and computability. The emphasis is on the computational aspects, so that the reader can see how the concepts are actually used. Because of logic's fundamental importance to computer science, the topic is examined extensively in three phases that cover informal logic, the technique of inductive proof; and formal logic and its applications to computer science. |
deduction method discrete math: The Curry-Howard Isomorphism Philippe De Groote, Ph De Groote, 1995 |
deduction method discrete math: Discrete Mathematics James L. Hein, 2003 Winner at the 46th Annual New England Book Show (2003) in the College Covers & Jackets category This introduction to discrete mathematics prepares future computer scientists, engineers, and mathematicians for success by providing extensive and concentrated coverage of logic, functions, algorithmic analysis, and algebraic structures. Discrete Mathematics, Second Edition illustrates the relationships between key concepts through its thematic organization and provides a seamless transition between subjects. Distinct for the depth with which it covers logic, this text emphasizes problem solving and the application of theory as it carefully guides the reader from basic to more complex topics. Discrete Mathematics is an ideal resource for discovering the fundamentals of discrete math. Discrete Mathematics, Second Edition is designed for an introductory course in discrete mathematics for the prospective computer scientist, applied mathematician, or engineer who wants to learn how the ideas apply to computer sciences.The choice of topics-and the breadth of coverage-reflects the desire to provide students with the foundations needed to successfully complete courses at the upper division level in undergraduate computer science courses. This book differs in several ways from current books about discrete mathematics.It presents an elementary and unified introduction to a collection of topics that has not been available in a single source.A major feature of the book is the unification of the material so that it does not fragment into a collection of seemingly unrelated ideas. |
DEDUCTION Definition & Meaning - Merriam-Webster
Deductive reasoning, or deduction, is making an inference based on widely accepted facts or premises. If a meal is described as "eaten with a fork" you may use deduction to determine …
DEDUCTION | English meaning - Cambridge Dictionary
DEDUCTION definition: 1. the process of reaching a decision or answer by thinking about the known facts, or the decision…. Learn more.
Deduction Definition & Meaning | Britannica Dictionary
DEDUCTION meaning: 1 : the act of taking away something (such as an amount of money) from a total; 2 : something (such as an amount of money) that is or can be subtracted from a total
Deduction - definition of deduction by The Free Dictionary
deduction - a reduction in the gross amount on which a tax is calculated; reduces taxes by the percentage fixed for the taxpayer's income bracket
Deduction - Wikipedia
English modals of deduction, English modal verbs to state how sure somebody is about something. Deduction (food stamps), used in the United States to calculate a household's …
DEDUCTION definition and meaning | Collins English Dictionary
A deduction is an expense that can be deducted from income on a tax return. Most homeowners can get a federal income tax deduction on interest payments to a home equity loan. …
deduction noun - Definition, pictures, pronunciation and usage …
Definition of deduction noun in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Deduction - Definition, Meaning & Synonyms - Vocabulary.com
Deduction means taking away, or an amount taken away. If you're a fan of Sherlock Holmes, you already know that the process of logical deduction helps to solve crimes––you take away the …
What does DEDUCTION mean? - Definitions.net
Deduction is a reasoning process that draws conclusions based on a general rule or principle, applied to specific cases. It is a method of logical interpretation where facts or information are …
Credits and deductions for individuals - Internal Revenue Service
May 21, 2025 · A deduction is an amount you subtract from your income when you file so you don’t pay tax on it. By lowering your income, deductions lower your tax. You need documents …
DEDUCTION Definition & Meaning - Merriam-Webster
Deductive reasoning, or deduction, is making an inference based on widely accepted facts or premises. If a meal is described as "eaten with a fork" you may use deduction to determine …
DEDUCTION | English meaning - Cambridge Dictionary
DEDUCTION definition: 1. the process of reaching a decision or answer by thinking about the known facts, or the decision…. Learn more.
Deduction Definition & Meaning | Britannica Dictionary
DEDUCTION meaning: 1 : the act of taking away something (such as an amount of money) from a total; 2 : something (such as an amount of money) that is or can be subtracted from a total
Deduction - definition of deduction by The Free Dictionary
deduction - a reduction in the gross amount on which a tax is calculated; reduces taxes by the percentage fixed for the taxpayer's income bracket
Deduction - Wikipedia
English modals of deduction, English modal verbs to state how sure somebody is about something. Deduction (food stamps), used in the United States to calculate a household's …
DEDUCTION definition and meaning | Collins English Dictionary
A deduction is an expense that can be deducted from income on a tax return. Most homeowners can get a federal income tax deduction on interest payments to a home equity loan. …
deduction noun - Definition, pictures, pronunciation and usage …
Definition of deduction noun in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Deduction - Definition, Meaning & Synonyms - Vocabulary.com
Deduction means taking away, or an amount taken away. If you're a fan of Sherlock Holmes, you already know that the process of logical deduction helps to solve crimes––you take away the …
What does DEDUCTION mean? - Definitions.net
Deduction is a reasoning process that draws conclusions based on a general rule or principle, applied to specific cases. It is a method of logical interpretation where facts or information are …
Credits and deductions for individuals - Internal Revenue Service
May 21, 2025 · A deduction is an amount you subtract from your income when you file so you don’t pay tax on it. By lowering your income, deductions lower your tax. You need documents …