Define Origin In Math

Advertisement



  define origin in math: What is Mathematics? Richard Courant, Herbert Robbins, 1996 The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but not real understanding or greater intellectual independence. The new edition of this classic work seeks to address this problem. Its goal is to put the meaning back into mathematics. Lucid . . . easily understandable.--Albert Einstein. 301 linecuts.
  define origin in math: The Baller Teacher Playbook Tyler Tarver Ed S, 2021-02-18 Does your classroom run the way you want? Most people enter the teaching profession wanting to make a difference in young people's lives. However, more and more teachers feel lost, frustrated, and overwhelmed with everything they're required to do. It's hard to be successful without a clear plan on getting control of your classroom, empowering your students, and making the learning experience more enjoyable for you and your students. These 18 chapters are crucial for any educator who wants to take their teaching to the next level. Teacher, Principal, Director, Dean, and YouTube/TikTok teacher, Tyler Tarver knows that education is more than just standing in front of students lecturing them on a specific topic - it's a culture of learning that educators foster to train the next generation. If you are attempting to be the best educator you can in the environment you're in, you need ideas and encouragement from someone who's been exactly where you are. Even if you had the time, money, and support we know teachers deserve, we know that applying any knowledge always has a greater impact when you're able to give personal and practical application to the ideas you know matter. Besides sitting through 60+ hours a year of professional development, there is another way to incrementally improve your teaching week after week. Spoiler Alert: It can also be fun. Tyler Tarver learned how to create the culture he wanted in his classroom. He was able to pass this on to any educator who wanted to get excited about teaching and have a deeper impact on their students. He wrote The Baller Teacher Playbook to teach others what it takes to expand your teaching and create a community of happy and engaged learners. These short, weekly chapters and accompanying resources will add enormous value to your classroom and the school you work for. In this 18-week guide, readers will be introduced to the top areas where truly successful teachers and their students excel: Reason vs Excuses: How do you overcome the hurdles inherent in education? Fun: How do you get yourself and students excited about learning? Creativity: How do you create a culture where every day is unexpected but not chaotic? Positivity: How can we roll with the punches but not have to fake it? Authenticity: How can I be myself but genuinely connect with young people? Leadership: How do I get my students to lead without me? Collaboration: How do I work with my administrators, colleagues, and parents to better every student's education? Diversity: How do I help build empathy and understanding among myself and my students? Development: How am I always getting better? Plus more! The Baller Teacher Playbook is the must-have guide for anyone who feels lost or overwhelmed by the current educational climate, even if they have been teaching for years. Learn from a fellow educator who had their fair share of mistakes and successes through the simple but effective tactics shared in these pages. Take things further: If you want to move forward even faster as an educational professional, read a chapter once a week with your team, and come together at weekly meetings to discuss experience, ideas, triumphs, and a community of educators trying to improve themselves and their classroom.
  define origin in math: What is Mathematics? Richard Courant, Herbert Robbins, 1978
  define origin in math: Encyclopedic Dictionary of Mathematics Nihon Sūgakkai, 1993 V.1. A.N. v.2. O.Z. Apendices and indexes.
  define origin in math: Precalculus Jay P. Abramson, Valeree Falduto, Rachael Gross (Mathematics teacher), David Lippman, Melonie Rasmussen, Rick Norwood, Nicholas Belloit, Jean-Marie Magnier, Harold Whipple, Christina Fernandez, 2014-10-23 Precalculus is intended for college-level precalculus students. Since precalculus courses vary from one institution to the next, we have attempted to meet the needs of as broad an audience as possible, including all of the content that might be covered in any particular course. The result is a comprehensive book that covers more ground than an instructor could likely cover in a typical one- or two-semester course; but instructors should find, almost without fail, that the topics they wish to include in their syllabus are covered in the text. Many chapters of OpenStax College Precalculus are suitable for other freshman and sophomore math courses such as College Algebra and Trigonometry; however, instructors of those courses might need to supplement or adjust the material. OpenStax will also be releasing College Algebra and Algebra and trigonometry titles tailored to the particular scope, sequence, and pedagogy of those courses.--Preface.
  define origin in math: Advanced Calculus (Revised Edition) Lynn Harold Loomis, Shlomo Zvi Sternberg, 2014-02-26 An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
  define origin in math: A Topology of Mind Robert K. Logan, Izabella Pruska-Oldenhof, 2022-05-06 This volume covers many diverse topics related in varying degrees to mathematics in mind including the mathematical and topological structures of thought and communication. It examines mathematics in mind from the perspective of the spiral, cyclic and hyperlinked structures of the human mind in terms of its language, its thoughts and its various modes of communication in science, philosophy, literature and the arts including a chapter devoted to the spiral structure of the thought of Marshall McLuhan. In it, the authors examine the topological structures of hypertext, hyperlinking, and hypermedia made possible by the Internet and the hyperlinked structures that existed before its emergence. It also explores the cognitive origins of mathematical thinking of the human mind and its relation to the emergence of spoken language, and studies the emergence of mathematical notation and its impact on education. Topics addressed include: • The historical context of any topic that involves how mathematical thinking emerged, focusing on archaeological and philological evidence. • Connection between math cognition and symbolism, annotation and other semiotic processes. • Interrelationships between mathematical discovery and cultural processes, including technological systems that guide the thrust of cognitive and social evolution. • Whether mathematics is an innate faculty or forged in cultural-historical context • What, if any, structures are shared between mathematics and language
  define origin in math: Euclid's Elements Euclid, Dana Densmore, 2002 The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary --from book jacket.
  define origin in math: Curves and Surfaces Sebastián Montiel, Antonio Ros, 2009 Offers a focused point of view on the differential geometry of curves and surfaces. This monograph treats the Gauss - Bonnet theorem and discusses the Euler characteristic. It also covers Alexandrov's theorem on embedded compact surfaces in R3 with constant mean curvature.
  define origin in math: The Nothing that is , 2000 In the tradition of Longitude, a small and engagingly written book on the history and meaning of zero--a tour de force of science history that takes us through the hollow circle that leads to infinity. 32 illustrations.
  define origin in math: The Origins of Cauchy's Rigorous Calculus Judith V. Grabiner, 2012-05-11 This text examines the reinterpretation of calculus by Augustin-Louis Cauchy and his peers in the 19th century. These intellectuals created a collection of well-defined theorems about limits, continuity, series, derivatives, and integrals. 1981 edition.
  define origin in math: Symmetry: A Very Short Introduction Ian Stewart, 2013-05-30 In the 1800s mathematicians introduced a formal theory of symmetry: group theory. Now a branch of abstract algebra, this subject first arose in the theory of equations. Symmetry is an immensely important concept in mathematics and throughout the sciences, and its applications range across the entire subject. Symmetry governs the structure of crystals, innumerable types of pattern formation, how systems change their state as parameters vary; and fundamental physics is governed by symmetries in the laws of nature. It is highly visual, with applications that include animal markings, locomotion, evolutionary biology, elastic buckling, waves, the shape of the Earth, and the form of galaxies. In this Very Short Introduction, Ian Stewart demonstrates its deep implications, and shows how it plays a major role in the current search to unify relativity and quantum theory. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
  define origin in math: A History of Mathematical Notations Florian Cajori, 2013-09-26 This classic study notes the origin of a mathematical symbol, the competition it encountered, its spread among writers in different countries, its rise to popularity, and its eventual decline or ultimate survival. 1929 edition.
  define origin in math: An Introduction to Measure Theory Terence Tao, 2021-09-03 This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
  define origin in math: The Words of Mathematics Steven Schwartzman, 1994 This book explains the origins of over 1500 mathematical terms used in English.
  define origin in math: The Geometry of Schemes David Eisenbud, Joe Harris, 2006-04-06 Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
  define origin in math: The Knot Book Colin Conrad Adams, 2004 Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to this theory, starting with our understanding of knots. It presents the applications of knot theory to modern chemistry, biology and physics.
  define origin in math: College Algebra Jay Abramson, 2018-01-07 College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory
  define origin in math: FTCE Preschool Education Birth-Age 4 Secrets Study Guide: FTCE Test Review for the Florida Teacher Certification Examinations Ftce Exam Secrets Test Prep, 2018-04-12 ***Includes Practice Test Questions*** FTCE Preschool Education Birth-Age 4 Secrets helps you ace the Florida Teacher Certification Examinations, without weeks and months of endless studying. Our comprehensive FTCE Preschool Education Birth-Age 4 Secrets study guide is written by our exam experts, who painstakingly researched every topic and concept that you need to know to ace your test. Our original research reveals specific weaknesses that you can exploit to increase your exam score more than you've ever imagined. FTCE Preschool Education Birth-Age 4 Secrets includes: The 5 Secret Keys to FTCE Test Success: Time Is Your Greatest Enemy, Guessing is Not Guesswork, Practice Smarter, Not Harder, Prepare, Don't Procrastinate, Test Yourself; Introduction to the FTCE Series; A comprehensive General Strategy review including: Make Predictions, Answer the Question, Benchmark, Valid Information, Avoid Fact Traps, Milk the Question, The Trap of Familiarity, Eliminate Answers, Tough Questions, Brainstorm, Read Carefully, Face Value, Prefixes, Hedge Phrases, Switchback Words, New Information, Time Management, Contextual Clues, Don't Panic, Pace Yourself, Answer Selection, Check Your Work, Beware of Directly Quoted Answers, Slang, Extreme Statements, Answer Choice Families; Along with a complete, in-depth study guide for your specific FTCE exam, and much more...
  define origin in math: A Concise Course in Algebraic Topology J. P. May, 1999-09 Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
  define origin in math: Thinking about Mathematics Stewart Shapiro, 2000-07-13 Thinking about Mathematics covers the range of philosophical issues and positions concerning mathematics. The text describes the questions about mathematics that motivated philosophers throughout history and covers historical figures such as Plato, Aristotle, Kant, and Mill. It also presents the major positions and arguments concerning mathematics throughout the twentieth century, bringing the reader up to the present positions and battle lines.
  define origin in math: Encyclopaedia of Mathematics M. Hazewinkel, 2013-12-01
  define origin in math: Mathematics and Computation Avi Wigderson, 2019-10-29 From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
  define origin in math: Algebra and Trigonometry Jay P. Abramson, Valeree Falduto, Rachael Gross (Mathematics teacher), David Lippman, Rick Norwood, Melonie Rasmussen, Nicholas Belloit, Jean-Marie Magnier, Harold Whipple, Christina Fernandez, 2015-02-13 The text is suitable for a typical introductory algebra course, and was developed to be used flexibly. While the breadth of topics may go beyond what an instructor would cover, the modular approach and the richness of content ensures that the book meets the needs of a variety of programs.--Page 1.
  define origin in math: الكتاب المختصر فى حساب الجبر والمقابلة Muḥammad ibn Mūsá Khuwārizmī, 1831
  define origin in math: Algebraic Curves William Fulton, 2008 The aim of these notes is to develop the theory of algebraic curves from the viewpoint of modern algebraic geometry, but without excessive prerequisites. We have assumed that the reader is familiar with some basic properties of rings, ideals and polynomials, such as is often covered in a one-semester course in modern algebra; additional commutative algebra is developed in later sections.
  define origin in math: An Introduction to Abstract Mathematics Robert J. Bond, William J. Keane, 2007-08-24 Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs all while becoming familiar with the grammar of mathematics and its style. In addition, they will develop an appreciation of the different methods of proof (contradiction, induction), the value of a proof, and the beauty of an elegant argument. The authors emphasize that mathematics is an ongoing, vibrant disciplineits long, fascinating history continually intersects with territory still uncharted and questions still in need of answers. The authors extensive background in teaching mathematics shines through in this balanced, explicit, and engaging text, designed as a primer for higher- level mathematics courses. They elegantly demonstrate process and application and recognize the byproducts of both the achievements and the missteps of past thinkers. Chapters 1-5 introduce the fundamentals of abstract mathematics and chapters 6-8 apply the ideas and techniques, placing the earlier material in a real context. Readers interest is continually piqued by the use of clear explanations, practical examples, discussion and discovery exercises, and historical comments.
  define origin in math: Encyclopaedia of Mathematics Michiel Hazewinkel, 2013-12-01 This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathematics. It is a translation with updates and editorial comments of the Soviet Mathematical En cyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977 - 1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivision has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathe matics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, engineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.
  define origin in math: Math Magic Amazing Skill in Mathematics : Make Mathematics Your Best Friend/251 Amazing Facts of Mathematics/Enrich Your Maths Skill Rajesh Kumar Thakur, 2022-09-16 Math Magic Amazing Skill in Mathematics: Make Mathematics Your Best Friend/251 Amazing Facts of Mathematics/Enrich Your Maths Skill by Rajesh Kumar Thakur: This captivating book delves into the fascinating world of mathematics, offering readers an opportunity to develop a deep and meaningful relationship with the subject. Make Mathematics Your Best Friend advocates for a positive attitude towards mathematics, encouraging readers to embrace it as a valuable tool in various aspects of life. 251 Amazing Facts of Mathematics presents a collection of intriguing and mind-boggling facts that showcase the wonders and mysteries of mathematics. Enrich Your Maths Skill offers practical techniques and strategies to enhance mathematical abilities, empowering readers to tackle complex problems with confidence and proficiency. Key Aspects of the Book: 1. Make Mathematics Your Best Friend: In this section, Rajesh Kumar Thakur advocates for a positive approach to mathematics, emphasizing its significance and relevance in everyday life, academics, and beyond. 2. 251 Amazing Facts of Mathematics: This segment presents a compilation of astonishing facts about mathematics, revealing the beauty and intrigue of the subject, fostering a sense of wonder and appreciation. 3. Enrich Your Maths Skill: The book offers valuable techniques and strategies to strengthen mathematical abilities, equipping readers to tackle mathematical challenges with confidence and efficiency. Rajesh Kumar Thakur is a respected author and educator, dedicated to promoting the wonders of mathematics. Through Math Magic Amazing Skill in Mathematics, he aims to cultivate a deep love and understanding of mathematics, empowering readers to approach the subject with enthusiasm and curiosity.
  define origin in math: Introduction to Random Graphs Alan Frieze, Michał Karoński, 2016 The text covers random graphs from the basic to the advanced, including numerous exercises and recommendations for further reading.
  define origin in math: Mathematics for the General Reader E.C. Titchmarsh, 2017-04-19 A first-class mathematician's lucid, unhurried account of the science of numbers from arithmetic through the calculus. — James R. Newman, The World of Mathematics. This highly accessible introduction to mathematics is geared toward readers seeking a firm grasp of the essentials of mathematical theory and practice. The treatment also offers a concise outline of mathematical history and a clearer notion of why mathematicians do what they do. Author E. C. Titchmarsh, who served for many years as Savilian Professor of Geometry at Oxford University, begins with counting and the fundamentals of arithmetic. He guides readers through the complexities of algebra, fractions, geometry, irrational numbers, logarithms, infinite series, complex numbers, quadratic equations, trigonometry, functions, and integral and differential calculus. Titchmarsh's graceful, fluid style helps make complicated topics easier to grasp, and his inclusion of numerous examples will prove especially helpful to readers with little or no background in mathematics.
  define origin in math: Proofs in Competition Math: Volume 2 Alexander Toller, Freya Edholm, Dennis Chen, 2019-07-10 All too often, through common school mathematics, students find themselves excelling in school math classes by memorizing formulas, but not their applications or the motivation behind them. As a consequence, understanding derived in this manner is tragically based on little or no proof. This is why studying proofs is paramount! Proofs help us understand the nature of mathematics and show us the key to appreciating its elegance. But even getting past the concern of why should this be true? students often face the question of when will I ever need this in life? Proofs in Competition Math aims to remedy these issues at a wide range of levels, from the fundamentals of competition math all the way to the Olympiad level and beyond. Don't worry if you don't know all of the math in this book; there will be prerequisites for each skill level, giving you a better idea of your current strengths and weaknesses and allowing you to set realistic goals as a math student. So, mathematical minds, we set you off!
  define origin in math: Mathematical Reasoning Theodore A. Sundstrom, 2007 Focusing on the formal development of mathematics, this book shows readers how to read, understand, write, and construct mathematical proofs.Uses elementary number theory and congruence arithmetic throughout. Focuses on writing in mathematics. Reviews prior mathematical work with “Preview Activities” at the start of each section. Includes “Activities” throughout that relate to the material contained in each section. Focuses on Congruence Notation and Elementary Number Theorythroughout.For professionals in the sciences or engineering who need to brush up on their advanced mathematics skills. Mathematical Reasoning: Writing and Proof, 2/E Theodore Sundstrom
  define origin in math: Mathematical Aesthetic Principles/nonintegrable Systems Murray Muraskin, 1995-05-09 Mathematical aesthetics is not discussed as a separate discipline in other books than this, even though it is reasonable to suppose that the foundations of physics lie in mathematical aesthetics. This book presents a list of mathematical principles that can be classified as “aesthetic” and shows that these principles can be cast into a nonlinear set of equations. Then, with this minimal input, the book shows that one can obtain lattice solutions, soliton systems, closed strings, instantons and chaotic-looking systems as well as multi-wave-packet solutions as output. These solutions have the common feature of being nonintegrable, i.e. the results of integration depend on the integration path. The topic of nonintegrable systems has not been given much attention in other books. Hence we discuss techniques for dealing with such systems.
  define origin in math: History of Topology I.M. James, 1999-08-24 Topology, for many years, has been one of the most exciting and influential fields of research in modern mathematics. Although its origins may be traced back several hundred years, it was Poincaré who gave topology wings in a classic series of articles published around the turn of the century. While the earlier history, sometimes called the prehistory, is also considered, this volume is mainly concerned with the more recent history of topology, from Poincaré onwards.As will be seen from the list of contents the articles cover a wide range of topics. Some are more technical than others, but the reader without a great deal of technical knowledge should still find most of the articles accessible. Some are written by professional historians of mathematics, others by historically-minded mathematicians, who tend to have a different viewpoint.
  define origin in math: The Mathematical Imagination Matthew Handelman, 2019-03-05 This book offers an archeology of the undeveloped potential of mathematics for critical theory. As Max Horkheimer and Theodor W. Adorno first conceived of the critical project in the 1930s, critical theory steadfastly opposed the mathematization of thought. Mathematics flattened thought into a dangerous positivism that led reason to the barbarism of World War II. The Mathematical Imagination challenges this narrative, showing how for other German-Jewish thinkers, such as Gershom Scholem, Franz Rosenzweig, and Siegfried Kracauer, mathematics offered metaphors to negotiate the crises of modernity during the Weimar Republic. Influential theories of poetry, messianism, and cultural critique, Handelman shows, borrowed from the philosophy of mathematics, infinitesimal calculus, and geometry in order to refashion cultural and aesthetic discourse. Drawn to the austerity and muteness of mathematics, these friends and forerunners of the Frankfurt School found in mathematical approaches to negativity strategies to capture the marginalized experiences and perspectives of Jews in Germany. Their vocabulary, in which theory could be both mathematical and critical, is missing from the intellectual history of critical theory, whether in the work of second generation critical theorists such as Jürgen Habermas or in contemporary critiques of technology. The Mathematical Imagination shows how Scholem, Rosenzweig, and Kracauer’s engagement with mathematics uncovers a more capacious vision of the critical project, one with tools that can help us intervene in our digital and increasingly mathematical present. The Mathematical Imagination is available from the publisher on an open-access basis.
  define origin in math: History Algebraic Geometry Jean Dieudonné, 1985-05-30 This book contains several fundamental ideas that are revived time after time in different guises, providing a better understanding of algebraic geometric phenomena. It shows how the field is enriched with loans from analysis and topology and from commutative algebra and homological algebra.
  define origin in math: The Words of Mathematics: An Etymological Dictionary of Mathematical Terms in English Steven Schwartzman, 1994-12-31 Explains the orgins of over 1500 mathematical terms used in English. This book concentrates on where those terms come from and what their literal meanings are.
  define origin in math: Annals of Mathematics , 1927 Founded in 1884, Annals of Mathematics publishes research papers in pure mathematics.
  define origin in math: The Math You Need Thomas Mack, 2023-10-31 A comprehensive survey of undergraduate mathematics, compressing four years of study into one robust overview. In The Math You Need, Thomas Mack provides a singular, comprehensive survey of undergraduate mathematics, compressing four years of math curricula into one volume. Without sacrificing rigor, this book provides a go-to resource for the essentials that any academic or professional needs. Each chapter is followed by numerous exercises to provide the reader an opportunity to practice what they learned. The Math You Need is distinguished in its use of the Bourbaki style—the gold standard for concision and an approach that mathematicians will find of particular interest. As ambitious as it is compact, this text embraces mathematical abstraction throughout, avoiding ad hoc computations in favor of general results. Covering nine areas—group theory, commutative algebra, linear algebra, topology, real analysis, complex analysis, number theory, probability, and statistics—this thorough and highly effective overview of the undergraduate curriculum will prove to be invaluable to students and instructors alike.
DEFINE Definition & Meaning - Merriam-Webster
The meaning of DEFINE is to determine or identify the essential qualities or meaning of. How to use define in a sentence.

DEFINE Definition & Meaning | Dictionary.com
Define definition: to state or set forth the meaning of (a word, phrase, etc.).. See examples of DEFINE used in a sentence.

DEFINE | English meaning - Cambridge Dictionary
DEFINE definition: 1. to say what the meaning of something, especially a word, is: 2. to explain and describe the…. Learn more.

DEFINE definition and meaning | Collins English Dictionary
If you define something, you show, describe, or state clearly what it is and what its limits are, or what it is like. We were unable to define what exactly was wrong with him. [ VERB wh ]

Define - definition of define by The Free Dictionary
define - show the form or outline of; "The tree was clearly defined by the light"; "The camera could define the smallest object"

DEFINE - Definition & Meaning - Reverso English Dictionary
Define definition: state the meaning of a word or phrase. Check meanings, examples, usage tips, pronunciation, domains, related words.

define - Wiktionary, the free dictionary
May 13, 2025 · define (third-person singular simple present defines, present participle defining, simple past and past participle defined) To determine with precision; to mark out with …

Define: Definition, Meaning, and Examples - usdictionary.com
Dec 24, 2024 · The word "define" means to explain or clarify the meaning of something or to establish boundaries and parameters. It is a versatile word used in many contexts, from …

Define Definition & Meaning - YourDictionary
Define Sentence Examples The child's eagerness and interest carry her over many obstacles that would be our undoing if we stopped to define and explain everything. It will not be welfare (or, …

DEFINITION Definition & Meaning - Merriam-Webster
The meaning of DEFINITION is a statement of the meaning of a word or word group or a sign or symbol. How to use definition in a sentence.

DEFINE Definition & Meaning - Merriam-Webster
The meaning of DEFINE is to determine or identify the essential qualities or meaning of. How to use define in a sentence.

DEFINE Definition & Meaning | Dictionary.com
Define definition: to state or set forth the meaning of (a word, phrase, etc.).. See examples of DEFINE used in a sentence.

DEFINE | English meaning - Cambridge Dictionary
DEFINE definition: 1. to say what the meaning of something, especially a word, is: 2. to explain and describe the…. Learn more.

DEFINE definition and meaning | Collins English Dictionary
If you define something, you show, describe, or state clearly what it is and what its limits are, or what it is like. We were unable to define what exactly was wrong with him. [ …

Define - definition of define by The Free Dictionary
define - show the form or outline of; "The tree was clearly defined by the light"; "The camera could define the smallest object"