Advertisement
decision tree statistical analysis: Interpretable Machine Learning Christoph Molnar, 2020 This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project. |
decision tree statistical analysis: Data Mining and Knowledge Discovery Handbook Oded Maimon, Lior Rokach, 2006-05-28 Data Mining and Knowledge Discovery Handbook organizes all major concepts, theories, methodologies, trends, challenges and applications of data mining (DM) and knowledge discovery in databases (KDD) into a coherent and unified repository. This book first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. This volume concludes with in-depth descriptions of data mining applications in various interdisciplinary industries including finance, marketing, medicine, biology, engineering, telecommunications, software, and security. Data Mining and Knowledge Discovery Handbook is designed for research scientists and graduate-level students in computer science and engineering. This book is also suitable for professionals in fields such as computing applications, information systems management, and strategic research management. |
decision tree statistical analysis: Data Mining with Decision Trees Lior Rokach, Oded Z. Maimon, 2008 This is the first comprehensive book dedicated entirely to the field of decision trees in data mining and covers all aspects of this important technique.Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining, the science and technology of exploring large and complex bodies of data in order to discover useful patterns. The area is of great importance because it enables modeling and knowledge extraction from the abundance of data available. Both theoreticians and practitioners are continually seeking techniques to make the process more efficient, cost-effective and accurate. Decision trees, originally implemented in decision theory and statistics, are highly effective tools in other areas such as data mining, text mining, information extraction, machine learning, and pattern recognition. This book invites readers to explore the many benefits in data mining that decision trees offer: Self-explanatory and easy to follow when compacted Able to handle a variety of input data: nominal, numeric and textual Able to process datasets that may have errors or missing values High predictive performance for a relatively small computational effort Available in many data mining packages over a variety of platforms Useful for various tasks, such as classification, regression, clustering and feature selection |
decision tree statistical analysis: Classification and Regression Trees Leo Breiman, 2017-10-19 The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties. |
decision tree statistical analysis: Nature Inspired Computing Bijaya Ketan Panigrahi, M. N. Hoda, Vinod Sharma, Shivendra Goel, 2017-10-03 This volume comprises the select proceedings of the annual convention of the Computer Society of India. Divided into 10 topical volumes, the proceedings present papers on state-of-the-art research, surveys, and succinct reviews. The volumes cover diverse topics ranging from communications networks to big data analytics, and from system architecture to cyber security. This volume focuses on Nature Inspired Computing. The contents of this book will be useful to researchers and students alike. |
decision tree statistical analysis: StatHand Tim Roden, 2017 |
decision tree statistical analysis: Applied Statistical Decision Theory Howard Raiffa, Robert Schlaifer, 2000-06-02 Das definitive Buch zur Anwendung der Bayes-Statistik auf wirtschaftliche Probleme in der Praxis, bei denen es um Entscheidungen mit unsicheren Randbedingungen geht! Der Aktionsplan als Ziel der Analyse soll sowohl den Prioritäten Rechnung tragen, die der Entscheidungsfinder bei den Folgen setzt, als auch unbekannte Faktoren in Form von Wahrscheinlichkeiten enthalten. - Jetzt als preiswerte Paperback-Ausgabe! (08/00) |
decision tree statistical analysis: Decision Trees for Analytics Using SAS Enterprise Miner Barry De Ville, Padraic Neville, 2019-07-03 Decision Trees for Analytics Using SAS Enterprise Miner is the most comprehensive treatment of decision tree theory, use, and applications available in one easy-to-access place. This book illustrates the application and operation of decision trees in business intelligence, data mining, business analytics, prediction, and knowledge discovery. It explains in detail the use of decision trees as a data mining technique and how this technique complements and supplements data mining approaches such as regression, as well as other business intelligence applications that incorporate tabular reports, OLAP, or multidimensional cubes. An expanded and enhanced release of Decision Trees for Business Intelligence and Data Mining Using SAS Enterprise Miner, this book adds up-to-date treatments of boosting and high-performance forest approaches and rule induction. There is a dedicated section on the most recent findings related to bias reduction in variable selection. It provides an exhaustive treatment of the end-to-end process of decision tree construction and the respective considerations and algorithms, and it includes discussions of key issues in decision tree practice. Analysts who have an introductory understanding of data mining and who are looking for a more advanced, in-depth look at the theory and methods of a decision tree approach to business intelligence and data mining will benefit from this book. |
decision tree statistical analysis: Handbook of Statistical Analysis and Data Mining Applications Ken Yale, Robert Nisbet, Gary D. Miner, 2017-11-09 Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications |
decision tree statistical analysis: Nonparametric Statistics for Applied Research Jared A. Linebach, Brian P. Tesch, Lea M. Kovacsiss, 2013-11-19 Non-parametric methods are widely used for studying populations that take on a ranked order (such as movie reviews receiving one to four stars). The use of non-parametric methods may be necessary when data have a ranking but no clear numerical interpretation, such as when assessing preferences. In terms of levels of measurement, non-parametric methods result in ordinal data. As non-parametric methods make fewer assumptions, their applicability is much wider than the corresponding parametric methods. In particular, they may be applied in situations where less is known about the application in question. Also, due to the reliance on fewer assumptions, non-parametric methods are more robust. Non-parametric methods have many popular applications, and are widely used in research in the fields of the behavioral sciences and biomedicine. This is a textbook on non-parametric statistics for applied research. The authors propose to use a realistic yet mostly fictional situation and series of dialogues to illustrate in detail the statistical processes required to complete data analysis. This book draws on a readers existing elementary knowledge of statistical analyses to broaden his/her research capabilities. The material within the book is covered in such a way that someone with a very limited knowledge of statistics would be able to read and understand the concepts detailed in the text. The “real world” scenario to be presented involves a multidisciplinary team of behavioral, medical, crime analysis, and policy analysis professionals work together to answer specific empirical questions regarding real-world applied problems. The reader is introduced to the team and the data set, and through the course of the text follows the team as they progress through the decision making process of narrowing the data and the research questions to answer the applied problem. In this way, abstract statistical concepts are translated into concrete and specific language. This text uses one data set from which all examples are taken. This is radically different from other statistics books which provide a varied array of examples and data sets. Using only one data set facilitates reader-directed teaching and learning by providing multiple research questions which are integrated rather than using disparate examples and completely unrelated research questions and data. |
decision tree statistical analysis: Flexible Imputation of Missing Data, Second Edition Stef van Buuren, 2018-07-17 Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data. |
decision tree statistical analysis: Decision Trees for Business Intelligence and Data Mining Barry De Ville, 2006 This example-driven guide illustrates the application and operation of decision trees in data mining, business intelligence, business analytics, prediction, and knowledge discovery. It explains in detail the use of decision trees as a data mining technique and how this technique complements and supplements other business intelligence applications. |
decision tree statistical analysis: Tree-Based Methods for Statistical Learning in R Brandon M. Greenwell, 2022-06-23 Tree-based Methods for Statistical Learning in R provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary. Building a strong foundation for how individual decision trees work will help readers better understand tree-based ensembles at a deeper level, which lie at the cutting edge of modern statistical and machine learning methodology. The book follows up most ideas and mathematical concepts with code-based examples in the R statistical language; with an emphasis on using as few external packages as possible. For example, users will be exposed to writing their own random forest and gradient tree boosting functions using simple for loops and basic tree fitting software (like rpart and party/partykit), and more. The core chapters also end with a detailed section on relevant software in both R and other opensource alternatives (e.g., Python, Spark, and Julia), and example usage on real data sets. While the book mostly uses R, it is meant to be equally accessible and useful to non-R programmers. Consumers of this book will have gained a solid foundation (and appreciation) for tree-based methods and how they can be used to solve practical problems and challenges data scientists often face in applied work. Features: Thorough coverage, from the ground up, of tree-based methods (e.g., CART, conditional inference trees, bagging, boosting, and random forests). A companion website containing additional supplementary material and the code to reproduce every example and figure in the book. A companion R package, called treemisc, which contains several data sets and functions used throughout the book (e.g., there’s an implementation of gradient tree boosting with LAD loss that shows how to perform the line search step by updating the terminal node estimates of a fitted rpart tree). Interesting examples that are of practical use; for example, how to construct partial dependence plots from a fitted model in Spark MLlib (using only Spark operations), or post-processing tree ensembles via the LASSO to reduce the number of trees while maintaining, or even improving performance. |
decision tree statistical analysis: An Introduction to Statistical Learning Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor, 2023-08-01 An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users. |
decision tree statistical analysis: Data Mining and Statistics for Decision Making Stéphane Tufféry, 2011-03-23 Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives. This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations. Key Features: Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques. Starts from basic principles up to advanced concepts. Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software. Gives practical tips for data mining implementation to solve real world problems. Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring. Supported by an accompanying website hosting datasets and user analysis. Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book. |
decision tree statistical analysis: End-to-End Data Science with SAS James Gearheart, 2020-06-26 Learn data science concepts with real-world examples in SAS! End-to-End Data Science with SAS: A Hands-On Programming Guide provides clear and practical explanations of the data science environment, machine learning techniques, and the SAS programming knowledge necessary to develop machine learning models in any industry. The book covers concepts including understanding the business need, creating a modeling data set, linear regression, parametric classification models, and non-parametric classification models. Real-world business examples and example code are used to demonstrate each process step-by-step. Although a significant amount of background information and supporting mathematics are presented, the book is not structured as a textbook, but rather it is a user’s guide for the application of data science and machine learning in a business environment. Readers will learn how to think like a data scientist, wrangle messy data, choose a model, and evaluate the model’s effectiveness. New data scientists or professionals who want more experience with SAS will find this book to be an invaluable reference. Take your data science career to the next level by mastering SAS programming for machine learning models. |
decision tree statistical analysis: Machine Learning Essentials Alboukadel Kassambara, 2018-03-10 Discovering knowledge from big multivariate data, recorded every days, requires specialized machine learning techniques. This book presents an easy to use practical guide in R to compute the most popular machine learning methods for exploring real word data sets, as well as, for building predictive models. The main parts of the book include: A) Unsupervised learning methods, to explore and discover knowledge from a large multivariate data set using clustering and principal component methods. You will learn hierarchical clustering, k-means, principal component analysis and correspondence analysis methods. B) Regression analysis, to predict a quantitative outcome value using linear regression and non-linear regression strategies. C) Classification techniques, to predict a qualitative outcome value using logistic regression, discriminant analysis, naive bayes classifier and support vector machines. D) Advanced machine learning methods, to build robust regression and classification models using k-nearest neighbors methods, decision tree models, ensemble methods (bagging, random forest and boosting). E) Model selection methods, to select automatically the best combination of predictor variables for building an optimal predictive model. These include, best subsets selection methods, stepwise regression and penalized regression (ridge, lasso and elastic net regression models). We also present principal component-based regression methods, which are useful when the data contain multiple correlated predictor variables. F) Model validation and evaluation techniques for measuring the performance of a predictive model. G) Model diagnostics for detecting and fixing a potential problems in a predictive model. The book presents the basic principles of these tasks and provide many examples in R. This book offers solid guidance in data mining for students and researchers. Key features: - Covers machine learning algorithm and implementation - Key mathematical concepts are presented - Short, self-contained chapters with practical examples. |
decision tree statistical analysis: Machine Learning Proceedings 1994 William W. Cohen, 2014-06-28 Machine Learning Proceedings 1994 |
decision tree statistical analysis: Data Mining with Decision Trees Lior Rokach, 2008 This is the first comprehensive book dedicated entirely to the field of decision trees in data mining and covers all aspects of this important technique. Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining, the science and technology of exploring large and complex bodies of data in order to discover useful patterns. The area is of great importance because it enables modeling and knowledge extraction from the abundance of data available. Both theoreticians and practitioners are continually seeking techniques to make the process more efficient, cost-effective and accurate. Decision trees, originally implemented in decision theory and statistics, are highly effective tools in other areas such as data mining, text mining, information extraction, machine learning, and pattern recognition. This book invites readers to explore the many benefits in data mining that decision trees offer:: Self-explanatory and easy to follow when compacted; Able to handle a variety of input data: nominal, numeric and textual; Able to process datasets that may have errors or missing values; High predictive performance for a relatively small computational effort; Available in many data mining packages over a variety of platforms; Useful for various tasks, such as classification, regression, clustering and feature selection . Sample Chapter(s). Chapter 1: Introduction to Decision Trees (245 KB). Chapter 6: Advanced Decision Trees (409 KB). Chapter 10: Fuzzy Decision Trees (220 KB). Contents: Introduction to Decision Trees; Growing Decision Trees; Evaluation of Classification Trees; Splitting Criteria; Pruning Trees; Advanced Decision Trees; Decision Forests; Incremental Learning of Decision Trees; Feature Selection; Fuzzy Decision Trees; Hybridization of Decision Trees with Other Techniques; Sequence Classification Using Decision Trees. Readership: Researchers, graduate and undergraduate students in information systems, engineering, computer science, statistics and management. |
decision tree statistical analysis: Machine Learning and Knowledge Discovery in Databases Walter Daelemans, Bart Goethals, 2008-09-04 This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques. |
decision tree statistical analysis: C4.5 J. Ross Quinlan, 1993 This book is a complete guide to the C4.5 system as implemented in C for the UNIX environment. It contains a comprehensive guide to the system's use, the source code (about 8,800 lines), and implementation notes. |
decision tree statistical analysis: The 2021 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy John Macintyre, Jinghua Zhao, Xiaomeng Ma, 2021-11-02 This book presents the proceedings of the 2020 2nd International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy (SPIoT-2021), online conference, on 30 October 2021. It provides comprehensive coverage of the latest advances and trends in information technology, science and engineering, addressing a number of broad themes, including novel machine learning and big data analytics methods for IoT security, data mining and statistical modelling for the secure IoT and machine learning-based security detecting protocols, which inspire the development of IoT security and privacy technologies. The contributions cover a wide range of topics: analytics and machine learning applications to IoT security; data-based metrics and risk assessment approaches for IoT; data confidentiality and privacy in IoT; and authentication and access control for data usage in IoT. Outlining promising future research directions, the book is a valuable resource for students, researchers and professionals and provides a useful reference guide for newcomers to the IoT security and privacy field. |
decision tree statistical analysis: Relational Data Mining Saso Dzeroski, 2001-08 As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The first part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programming; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field. |
decision tree statistical analysis: Advanced and Multivariate Statistical Methods Craig A. Mertler, Rachel A. Vannatta, Kristina N. LaVenia, 2021-11-29 Advanced and Multivariate Statistical Methods, Seventh Edition provides conceptual and practical information regarding multivariate statistical techniques to students who do not necessarily need technical and/or mathematical expertise in these methods. This text has three main purposes. The first purpose is to facilitate conceptual understanding of multivariate statistical methods by limiting the technical nature of the discussion of those concepts and focusing on their practical applications. The second purpose is to provide students with the skills necessary to interpret research articles that have employed multivariate statistical techniques. Finally, the third purpose of AMSM is to prepare graduate students to apply multivariate statistical methods to the analysis of their own quantitative data or that of their institutions. New to the Seventh Edition All references to SPSS have been updated to Version 27.0 of the software. A brief discussion of practical significance has been added to Chapter 1. New data sets have now been incorporated into the book and are used extensively in the SPSS examples. All the SPSS data sets utilized in this edition are available for download via the companion website. Additional resources on this site include several video tutorials/walk-throughs of the SPSS procedures. These how-to videos run approximately 5–10 minutes in length. Advanced and Multivariate Statistical Methods was written for use by students taking a multivariate statistics course as part of a graduate degree program, for example in psychology, education, sociology, criminal justice, social work, mass communication, and nursing. |
decision tree statistical analysis: Classification and Information Processing at the Turn of the Millennium Reinhold Decker, Wolfgang Gaul, 2000-08-01 This volume contains revised versions of selected papers presented dur ing the 23rd Annual Conference of the German Classification Society GfKl (Gesellschaft fiir Klassifikation). The conference took place at the Univer sity of Bielefeld (Germany) in March 1999 under the title Classification and Information Processing at the Turn of the Millennium. Researchers and practitioners - interested in data analysis, classification, and information processing in the broad sense, including computer science, multimedia, WWW, knowledge discovery, and data mining as well as spe cial application areas such as (in alphabetical order) biology, finance, genome analysis, marketing, medicine, public health, and text analysis - had the op portunity to discuss recent developments and to establish cross-disciplinary cooperation in their fields of interest. Additionally, software and book pre sentations as well as several tutorial courses were organized. The scientific program of the conference included 18 plenary or semi plenary lectures and more than 100 presentations in special sections. The peer-reviewed papers are presented in 5 chapters as follows: • Data Analysis and Classification • Computer Science, Computational Statistics, and Data Mining • Management Science, Marketing, and Finance • Biology, Genome Analysis, and Medicine • Text Analysis and Information Retrieval As an unambiguous assignment of results to single chapters is sometimes difficult papers are grouped in a way that the editors found appropriate. |
decision tree statistical analysis: Machine Intelligence and Soft Computing Debnath Bhattacharyya, N. Thirupathi Rao, 2021-01-21 This book gathers selected papers presented at the International Conference on Machine Intelligence and Soft Computing (ICMISC 2020), held jointly by Vignan’s Institute of Information Technology, Visakhapatnam, India and VFSTR Deemed to be University, Guntur, AP, India during 03-04 September 2020. Topics covered in the book include the artificial neural networks and fuzzy logic, cloud computing, evolutionary algorithms and computation, machine learning, metaheuristics and swarm intelligence, neuro-fuzzy system, soft computing and decision support systems, soft computing applications in actuarial science, soft computing for database deadlock resolution, soft computing methods in engineering, and support vector machine. |
decision tree statistical analysis: Fundamentals of Predictive Analytics with JMP, Second Edition Ron Klimberg, B. D. McCullough, 2017-12-19 Going beyond the theoretical foundation, this step-by-step book gives you the technical knowledge and problem-solving skills that you need to perform real-world multivariate data analysis. -- |
decision tree statistical analysis: The Elements of Statistical Learning Trevor Hastie, Robert Tibshirani, Jerome Friedman, 2013-11-11 During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting. |
decision tree statistical analysis: Statistical Pattern Recognition Andrew R. Webb, 2003-07-25 Statistical pattern recognition is a very active area of study andresearch, which has seen many advances in recent years. New andemerging applications - such as data mining, web searching,multimedia data retrieval, face recognition, and cursivehandwriting recognition - require robust and efficient patternrecognition techniques. Statistical decision making and estimationare regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fullyupdated with new methods, applications and references. It providesa comprehensive introduction to this vibrant area - with materialdrawn from engineering, statistics, computer science and the socialsciences - and covers many application areas, such as databasedesign, artificial neural networks, and decision supportsystems. * Provides a self-contained introduction to statistical patternrecognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vectormachines, and unsupervised classification. * Each section concludes with a description of the applicationsthat have been addressed and with further developments of thetheory. * Includes background material on dissimilarity, parameterestimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions tomore lengthy projects. The book is aimed primarily at senior undergraduate and graduatestudents studying statistical pattern recognition, patternprocessing, neural networks, and data mining, in both statisticsand engineering departments. It is also an excellent source ofreference for technical professionals working in advancedinformation development environments. For further information on the techniques and applicationsdiscussed in this book please visit ahref=http://www.statistical-pattern-recognition.net/www.statistical-pattern-recognition.net/a |
decision tree statistical analysis: Nonlinear Estimation and Classification David D. Denison, Mark H. Hansen, Christopher C. Holmes, Bani Mallick, Bin Yu, 2013-11-11 Researchers in many disciplines face the formidable task of analyzing massive amounts of high-dimensional and highly-structured data. This is due in part to recent advances in data collection and computing technologies. As a result, fundamental statistical research is being undertaken in a variety of different fields. Driven by the complexity of these new problems, and fueled by the explosion of available computer power, highly adaptive, non-linear procedures are now essential components of modern data analysis, a term that we liberally interpret to include speech and pattern recognition, classification, data compression and signal processing. The development of new, flexible methods combines advances from many sources, including approximation theory, numerical analysis, machine learning, signal processing and statistics. The proposed workshop intends to bring together eminent experts from these fields in order to exchange ideas and forge directions for the future. |
decision tree statistical analysis: Computational Genomics with R Altuna Akalin, 2020-12-16 Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015. |
decision tree statistical analysis: Introduction to Data Science Rafael A. Irizarry, 2019-11-20 Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert. |
decision tree statistical analysis: Hands-On Machine Learning with R Brad Boehmke, Brandon M. Greenwell, 2019-11-07 Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data. |
decision tree statistical analysis: Tree Models of Similarity and Association James E. Corter, 1996-04-02 This book describes how matrices of similarities or associations among entities can be modelled using trees in order to explain some of the issues that arise in performing similarity relations analyses and interpreting the results correctly. |
decision tree statistical analysis: Using Information to Develop a Culture of Customer Centricity David Loshin, Abie Reifer, 2013-11-22 Using Information to Develop a Culture of Customer Centricity sets the stage for understanding the holistic marriage of information, socialization, and process change necessary for transitioning an organization to customer centricity. The book begins with an overview list of 8-10 precepts associated with a business-focused view of the knowledge necessary for developing customer-oriented business processes that lead to excellent customer experiences resulting in increased revenues. Each chapter delves into each precept in more detail. |
decision tree statistical analysis: Ensemble Methods in Data Mining Giovanni Seni, John Fletcher Elder, 2010 Ensemble methods have been called the most influential development in Data Mining and Machine Learning in the past decade. They combine multiple models into one usually more accurate than the best of its components. Ensembles can provide a critical boost to industrial challenges -- from investment timing to drug discovery, and fraud detection to recommendation systems -- where predictive accuracy is more vital than model interpretability. Ensembles are useful with all modeling algorithms, but this book focuses on decision trees to explain them most clearly. After describing trees and their strengths and weaknesses, the authors provide an overview of regularization -- today understood to be a key reason for the superior performance of modern ensembling algorithms. The book continues with a clear description of two recent developments: Importance Sampling (IS) and Rule Ensembles (RE). IS reveals classic ensemble methods -- bagging, random forests, and boosting -- to be special cases of a single algorithm, thereby showing how to improve their accuracy and speed. REs are linear rule models derived from decision tree ensembles. They are the most interpretable version of ensembles, which is essential to applications such as credit scoring and fault diagnosis. Lastly, the authors explain the paradox of how ensembles achieve greater accuracy on new data despite their (apparently much greater) complexity.--Publisher's website. |
decision tree statistical analysis: Naked Statistics: Stripping the Dread from the Data Charles Wheelan, 2013-01-07 A New York Times bestseller Brilliant, funny…the best math teacher you never had. —San Francisco Chronicle Once considered tedious, the field of statistics is rapidly evolving into a discipline Hal Varian, chief economist at Google, has actually called sexy. From batting averages and political polls to game shows and medical research, the real-world application of statistics continues to grow by leaps and bounds. How can we catch schools that cheat on standardized tests? How does Netflix know which movies you’ll like? What is causing the rising incidence of autism? As best-selling author Charles Wheelan shows us in Naked Statistics, the right data and a few well-chosen statistical tools can help us answer these questions and more. For those who slept through Stats 101, this book is a lifesaver. Wheelan strips away the arcane and technical details and focuses on the underlying intuition that drives statistical analysis. He clarifies key concepts such as inference, correlation, and regression analysis, reveals how biased or careless parties can manipulate or misrepresent data, and shows us how brilliant and creative researchers are exploiting the valuable data from natural experiments to tackle thorny questions. And in Wheelan’s trademark style, there’s not a dull page in sight. You’ll encounter clever Schlitz Beer marketers leveraging basic probability, an International Sausage Festival illuminating the tenets of the central limit theorem, and a head-scratching choice from the famous game show Let’s Make a Deal—and you’ll come away with insights each time. With the wit, accessibility, and sheer fun that turned Naked Economics into a bestseller, Wheelan defies the odds yet again by bringing another essential, formerly unglamorous discipline to life. |
decision tree statistical analysis: Python Data Science Handbook Jake VanderPlas, 2016-11-21 For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms |
decision tree statistical analysis: Statistics for Ecologists Using R and Excel Mark Gardener, 2017-01-16 This is a book about the scientific process and how you apply it to data in ecology. You will learn how to plan for data collection, how to assemble data, how to analyze data and finally how to present the results. The book uses Microsoft Excel and the powerful Open Source R program to carry out data handling as well as producing graphs. Statistical approaches covered include: data exploration; tests for difference – t-test and U-test; correlation – Spearman’s rank test and Pearson product-moment; association including Chi-squared tests and goodness of fit; multivariate testing using analysis of variance (ANOVA) and Kruskal–Wallis test; and multiple regression. Key skills taught in this book include: how to plan ecological projects; how to record and assemble your data; how to use R and Excel for data analysis and graphs; how to carry out a wide range of statistical analyses including analysis of variance and regression; how to create professional looking graphs; and how to present your results. New in this edition: a completely revised chapter on graphics including graph types and their uses, Excel Chart Tools, R graphics commands and producing different chart types in Excel and in R; an expanded range of support material online, including; example data, exercises and additional notes & explanations; a new chapter on basic community statistics, biodiversity and similarity; chapter summaries and end-of-chapter exercises. Praise for the first edition: This book is a superb way in for all those looking at how to design investigations and collect data to support their findings. – Sue Townsend, Biodiversity Learning Manager, Field Studies Council [M]akes it easy for the reader to synthesise R and Excel and there is extra help and sample data available on the free companion webpage if needed. I recommended this text to the university library as well as to colleagues at my student workshops on R. Although I initially bought this book when I wanted to discover R I actually also learned new techniques for data manipulation and management in Excel – Mark Edwards, EcoBlogging A must for anyone getting to grips with data analysis using R and excel. – Amazon 5-star review It has been very easy to follow and will be perfect for anyone. – Amazon 5-star review A solid introduction to working with Excel and R. The writing is clear and informative, the book provides plenty of examples and figures so that each string of code in R or step in Excel is understood by the reader. – Goodreads, 4-star review |
decision tree statistical analysis: Machine Learning Techniques for Improved Business Analytics G., Dileep Kumar, 2018-07-06 Analytical tools and algorithms are essential in business data and information systems. Efficient economic and financial forecasting in machine learning techniques increases gains while reducing risks. Providing research on predictive models with high accuracy, stability, and ease of interpretation is important in improving data preparation, analysis, and implementation processes in business organizations. Machine Learning Techniques for Improved Business Analytics is a collection of innovative research on the methods and applications of artificial intelligence in strategic business decisions and management. Featuring coverage on a broad range of topics such as data mining, portfolio optimization, and social network analysis, this book is ideally designed for business managers and practitioners, upper-level business students, and researchers seeking current research on large-scale information control and evaluation technologies that exceed the functionality of conventional data processing techniques. |
A Statistical Decision Tree
A Statistical Decision Tree Steps to Significance Testing: 1. Define H o and H a. 2. Pick your test, α, 1-tailed vs. 2-tailed, df. Find critical value in table. 3.Draw your diagram. Mark the rejection …
CS229 Lecture Notes: Decision Trees - Stanford University
Consider the following two decision tree models where d = 2, a, b, c ∈ R, and j ∈ {1, 2}: For each of these models, what (if any) are the restrictions on a, b, c and j if we require that all four …
STAT 451: Machine Learning Lecture Notes - Sebastian …
Decision tree algorithms can be considered as iterative, top-down construction method for the hypothesis (classi er). You can picture a decision tree as a hierarchy of deci-sions, which are …
DECISION TREES: How to Construct Them and How to Use …
used to construct a decision tree in which the feature tests for making a decision on a new data record are organized optimally in the form of a tree of decision nodes.
Four Ways to do Project Analysis Project Analysis / Decision …
•Statistical breakdown of possible outcomes. •Dealing with continuous distribution. What is a Decision Tree? • A Visual Representation of Choices, Consequences, Probabilities, and …
Intro to Statistical Decision Analysis - Duke University
Professor Scott Schmidler Duke University Intro to Statistical Decision Analysis Course Outline Structuring decision problems Key elements Decision trees In uence diagrams Foundations …
Decision tree analysis in SPSS - The University of Sheffield
Decision tree analysis helps identify characteristics of groups, looks at relationships between independent variables regarding the dependent variable and displays this information in a non …
Methods for statistical data analysis with decision trees
Decision trees, which are considered in a regression analysis problem, are called regression trees. In the given manual we consider the simplest kind of decision trees, described above.
Decision Tree Statistical Learning Models. An application to …
Decision Tree Statistical Learning Models. An application to New Customer Scoring. The aim of this thesis is to explore, understand and apply statistical learning methods based on decision …
Decision Tree for Key Comparisons - NIST
This contribution describes a Decision Tree intended to guide the selection of statistical models and data reduction procedures in key comparisons (KCs).
Decision Trees: Modeling with fast intuition and slow, …
Constructing a decision tree requires methodically identifying key decision points, viable options at each point, probabilities, and payoffs for each outcome path, and calculating expected values.
Decision and Regression Trees - Guide to Intelligent Data …
− Decision trees aim to find a hierarchical structure to explain how different areas in the input space correspond to different outcomes. − They tend to be insensitive to normalization issues …
Statistical analysis of various splitting criteria for decision trees
Various decision tree algorithms are developed using a variety of attribute selection criteria, following the top-down partitioning strategy. However, their effectiveness is in fluenced by the …
A simple decision chart for statistical tests in Biol321
Are you taking measurements (length, pH, duration, ...), or are you counting frequencies of different categories (gender, colour, species ...)? associations between sets of …
Statistical inference Part 3 Statistical Decision Theory
statistical inference and led to much useful methodology. Plus, knowing how to support good decision making under uncertainty should be a key part of the statistician’s toolkit.
Tree-Based Analysis: A Practical Approach to Create Clinical …
In this article, we review methodological and practical aspects of tree-based methods, with a focus on diagnostic classification (binary outcome) and prognostication (censored survival outcome). …
Case Study: Visualization for Decision Tree Analysis in Data …
Creating and evaluating decision trees benefits greatly from visualization of the trees and diagnostic measures of their effectiveness. This paper describes an application, EMTree …
Large Scale Prediction with Decision Trees - arXiv.org
Jun 4, 2021 · statistical framework for regression and classification problems, and introduce various impor-tant quantities for performance assessment. We review basic terminology …
A Study and Analysis of Decision Tree Based Classification …
In this classification, decision tree is used to estimate group relationships for exact data instances and helps to elevate the cause of dimensionality. This paper presents the comparative study …
A Statistical Decision Tree
A Statistical Decision Tree Steps to Significance Testing: 1. Define H o and H a. 2. Pick your test, α, 1-tailed vs. 2-tailed, df. Find critical value in table. 3.Draw your diagram. Mark the rejection …
Lecture 19: Decision trees - Stanford University
How is a decision tree built? 1. Select a region Rk, a predictor Xj, and a splitting point s, such that splitting Rk with the criterion Xj < s produces the largest decrease in RSS: 2. Redefine the …
CS229 Lecture Notes: Decision Trees - Stanford University
Consider the following two decision tree models where d = 2, a, b, c ∈ R, and j ∈ {1, 2}: For each of these models, what (if any) are the restrictions on a, b, c and j if we require that all four …
STAT 451: Machine Learning Lecture Notes - Sebastian …
Decision tree algorithms can be considered as iterative, top-down construction method for the hypothesis (classi er). You can picture a decision tree as a hierarchy of deci-sions, which are …
DECISION TREES: How to Construct Them and How to Use …
used to construct a decision tree in which the feature tests for making a decision on a new data record are organized optimally in the form of a tree of decision nodes.
Four Ways to do Project Analysis Project Analysis / …
•Statistical breakdown of possible outcomes. •Dealing with continuous distribution. What is a Decision Tree? • A Visual Representation of Choices, Consequences, Probabilities, and …
Intro to Statistical Decision Analysis - Duke University
Professor Scott Schmidler Duke University Intro to Statistical Decision Analysis Course Outline Structuring decision problems Key elements Decision trees In uence diagrams Foundations …
Decision tree analysis in SPSS - The University of Sheffield
Decision tree analysis helps identify characteristics of groups, looks at relationships between independent variables regarding the dependent variable and displays this information in a non …
Methods for statistical data analysis with decision trees
Decision trees, which are considered in a regression analysis problem, are called regression trees. In the given manual we consider the simplest kind of decision trees, described above.
Decision Tree Statistical Learning Models. An application to …
Decision Tree Statistical Learning Models. An application to New Customer Scoring. The aim of this thesis is to explore, understand and apply statistical learning methods based on decision trees, …
Decision Tree for Key Comparisons - NIST
This contribution describes a Decision Tree intended to guide the selection of statistical models and data reduction procedures in key comparisons (KCs).
Decision Trees: Modeling with fast intuition and slow, …
Constructing a decision tree requires methodically identifying key decision points, viable options at each point, probabilities, and payoffs for each outcome path, and calculating expected values.
Decision and Regression Trees - Guide to Intelligent Data …
− Decision trees aim to find a hierarchical structure to explain how different areas in the input space correspond to different outcomes. − They tend to be insensitive to normalization issues and …
Statistical analysis of various splitting criteria for decision trees
Various decision tree algorithms are developed using a variety of attribute selection criteria, following the top-down partitioning strategy. However, their effectiveness is in fluenced by the …
A simple decision chart for statistical tests in Biol321
Are you taking measurements (length, pH, duration, ...), or are you counting frequencies of different categories (gender, colour, species ...)? associations between sets of measurements? …
Statistical inference Part 3 Statistical Decision Theory
statistical inference and led to much useful methodology. Plus, knowing how to support good decision making under uncertainty should be a key part of the statistician’s toolkit.
Tree-Based Analysis: A Practical Approach to Create Clinical …
In this article, we review methodological and practical aspects of tree-based methods, with a focus on diagnostic classification (binary outcome) and prognostication (censored survival outcome). …
Case Study: Visualization for Decision Tree Analysis in Data …
Creating and evaluating decision trees benefits greatly from visualization of the trees and diagnostic measures of their effectiveness. This paper describes an application, EMTree Results Viewer, …
Large Scale Prediction with Decision Trees - arXiv.org
Jun 4, 2021 · statistical framework for regression and classification problems, and introduce various impor-tant quantities for performance assessment. We review basic terminology …
A Study and Analysis of Decision Tree Based Classification
In this classification, decision tree is used to estimate group relationships for exact data instances and helps to elevate the cause of dimensionality. This paper presents the comparative study on …