Advertisement
deep learning diagram tool: Deep Learning for Coders with fastai and PyTorch Jeremy Howard, Sylvain Gugger, 2020-06-29 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala |
deep learning diagram tool: Generative Deep Learning David Foster, 2019-06-28 Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and composing music. With this practical book, machine-learning engineers and data scientists will discover how to re-create some of the most impressive examples of generative deep learning models, such as variational autoencoders,generative adversarial networks (GANs), encoder-decoder models and world models. Author David Foster demonstrates the inner workings of each technique, starting with the basics of deep learning before advancing to some of the most cutting-edge algorithms in the field. Through tips and tricks, you’ll understand how to make your models learn more efficiently and become more creative. Discover how variational autoencoders can change facial expressions in photos Build practical GAN examples from scratch, including CycleGAN for style transfer and MuseGAN for music generation Create recurrent generative models for text generation and learn how to improve the models using attention Understand how generative models can help agents to accomplish tasks within a reinforcement learning setting Explore the architecture of the Transformer (BERT, GPT-2) and image generation models such as ProGAN and StyleGAN |
deep learning diagram tool: Deep Learning Theory and Applications Donatello Conte, Ana Fred, Oleg Gusikhin, Carlo Sansone, 2023-07-30 This book consitiutes the refereed proceedings of the 4th International Conference on Deep Learning Theory and Applications, DeLTA 2023, held in Rome, Italy from 13 to 14 July 2023. The 9 full papers and 22 short papers presented were thoroughly reviewed and selected from the 42 qualified submissions. The scope of the conference includes such topics as models and algorithms; machine learning; big data analytics; computer vision applications; and natural language understanding. |
deep learning diagram tool: Graph Representation Learning William L. William L. Hamilton, 2022-06-01 Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning. |
deep learning diagram tool: Deep Learning Ian Goodfellow, Yoshua Bengio, Aaron Courville, 2016-11-10 An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors. |
deep learning diagram tool: Neural Networks and Deep Learning Fundamentals Dr.Kuncham Sreenivasa Rao, Dr.Ugendhar Addagatla, Dr.Rajitha Kotoju, 2024-07-08 Dr.Kuncham Sreenivasa Rao, Associate Professor, Department of Computer Science and Engineering, Faculty of Science and Technology (ICFAI Tech), ICFAI Foundation for Higher Education (IFHE), Hyderabad, Telangana, India. Dr.Ugendhar Addagatla, Associate Professor, Department of Computer Science and Engineering, Maturi Venkata Subba Rao (MVSR) Engineering College, Nadergul, Hyderabad, Telangana, India. Dr.Rajitha Kotoju, Assistant Professor, Department of Computer Science and Engineering, Mahatma Gandhi Institute of Technology, Hyderabad, Telangana, India. |
deep learning diagram tool: Artificial Intelligence and Machine Learning Hai Jin, |
deep learning diagram tool: Deep Learning Networks Jayakumar Singaram, S. S. Iyengar, Azad M. Madni, 2023-12-03 This textbook presents multiple facets of design, development and deployment of deep learning networks for both students and industry practitioners. It introduces a deep learning tool set with deep learning concepts interwoven to enhance understanding. It also presents the design and technical aspects of programming along with a practical way to understand the relationships between programming and technology for a variety of applications. It offers a tutorial for the reader to learn wide-ranging conceptual modeling and programming tools that animate deep learning applications. The book is especially directed to students taking senior level undergraduate courses and to industry practitioners interested in learning about and applying deep learning methods to practical real-world problems. |
deep learning diagram tool: Efficient Processing of Deep Neural Networks Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel S. Emer, 2022-05-31 This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas. |
deep learning diagram tool: Geometry of Deep Learning Jong Chul Ye, 2022-01-05 The focus of this book is on providing students with insights into geometry that can help them understand deep learning from a unified perspective. Rather than describing deep learning as an implementation technique, as is usually the case in many existing deep learning books, here, deep learning is explained as an ultimate form of signal processing techniques that can be imagined. To support this claim, an overview of classical kernel machine learning approaches is presented, and their advantages and limitations are explained. Following a detailed explanation of the basic building blocks of deep neural networks from a biological and algorithmic point of view, the latest tools such as attention, normalization, Transformer, BERT, GPT-3, and others are described. Here, too, the focus is on the fact that in these heuristic approaches, there is an important, beautiful geometric structure behind the intuition that enables a systematic understanding. A unified geometric analysis to understand the working mechanism of deep learning from high-dimensional geometry is offered. Then, different forms of generative models like GAN, VAE, normalizing flows, optimal transport, and so on are described from a unified geometric perspective, showing that they actually come from statistical distance-minimization problems. Because this book contains up-to-date information from both a practical and theoretical point of view, it can be used as an advanced deep learning textbook in universities or as a reference source for researchers interested in acquiring the latest deep learning algorithms and their underlying principles. In addition, the book has been prepared for a codeshare course for both engineering and mathematics students, thus much of the content is interdisciplinary and will appeal to students from both disciplines. |
deep learning diagram tool: Deep Learning Illustrated Jon Krohn, Grant Beyleveld, Aglaé Bassens, 2019-08-05 The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come. – Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep Learning Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn. World-class instructor and practitioner Jon Krohn–with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens–presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered. You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitioners Explore new tools that make deep learning models easier to build, use, and improve Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details. |
deep learning diagram tool: Neural Network Design Martin T. Hagan, Howard Demuth, Mark Beale, 2003 |
deep learning diagram tool: TensorFlow for Deep Learning Bharath Ramsundar, Reza Bosagh Zadeh, 2018-03-01 Learn how to solve challenging machine learning problems with TensorFlow, Google’s revolutionary new software library for deep learning. If you have some background in basic linear algebra and calculus, this practical book introduces machine-learning fundamentals by showing you how to design systems capable of detecting objects in images, understanding text, analyzing video, and predicting the properties of potential medicines. TensorFlow for Deep Learning teaches concepts through practical examples and helps you build knowledge of deep learning foundations from the ground up. It’s ideal for practicing developers with experience designing software systems, and useful for scientists and other professionals familiar with scripting but not necessarily with designing learning algorithms. Learn TensorFlow fundamentals, including how to perform basic computation Build simple learning systems to understand their mathematical foundations Dive into fully connected deep networks used in thousands of applications Turn prototypes into high-quality models with hyperparameter optimization Process images with convolutional neural networks Handle natural language datasets with recurrent neural networks Use reinforcement learning to solve games such as tic-tac-toe Train deep networks with hardware including GPUs and tensor processing units |
deep learning diagram tool: Interpretable Machine Learning Christoph Molnar, 2020 This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project. |
deep learning diagram tool: Bioinformatics Tools for Pharmaceutical Drug Product Development Vivek Chavda, K. Anand, Vasso Apostolopoulos, 2023-03-14 BIOINFORMATICS TOOLS FOR Pharmaceutical DRUG PRODUCT DLEVELOPMENT A timely book that details bioinformatics tools, artificial intelligence, machine learning, computational methods, protein interactions, peptide-based drug design, and omics technologies, for drug development in the pharmaceutical and medical sciences industries. The book contains 17 chapters categorized into 3 sections. The first section presents the latest information on bioinformatics tools, artificial intelligence, machine learning, computational methods, protein interactions, peptide-based drug design, and omics technologies. The following 2 sections include bioinformatics tools for the pharmaceutical sector and the healthcare sector. Bioinformatics brings a new era in research to accelerate drug target and vaccine design development, improving validation approaches as well as facilitating and identifying side effects and predicting drug resistance. As such, this will aid in more successful drug candidates from discovery to clinical trials to the market, and most importantly make it a more cost-effective process overall. Readers will find in this book: Applications of bioinformatics tools for pharmaceutical drug product development like process development, pre-clinical development, clinical development, commercialization of the product, etc.; The ever-expanding application of this novel technology and discusses some of the unique challenges associated with such an approach; The broad and deep background, as well as updates, on recent advances in both medicine and AI/ML that enable the application of these cutting-edge bioinformatics tools. Audience The book will be used by researchers and scientists in academia and industry including drug developers, computational biochemists, bioinformaticians, immunologists, pharmaceutical and medical sciences, as well as those in artificial intelligence and machine learning. |
deep learning diagram tool: UAVs for Spatial Modelling and Urban Informatics Tony H. Grubesic, |
deep learning diagram tool: Evolution in Computational Intelligence Vikrant Bhateja, Xin-She Yang, Jerry Chun-Wei Lin, Ranjita Das, 2023-05-27 The book presents the proceedings of the 10th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA 2022), held at NIT Mizoram, Aizawl, Mizoram, India during 18 – 19 June 2022. Researchers, scientists, engineers, and practitioners exchange new ideas and experiences in the domain of intelligent computing theories with prospective applications in various engineering disciplines in the book. These proceedings are divided into two volumes. It covers broad areas of information and decision sciences, with papers exploring both the theoretical and practical aspects of data-intensive computing, data mining, evolutionary computation, knowledge management and networks, sensor networks, signal processing, wireless networks, protocols and architectures. This volume is a valuable resource for postgraduate students in various engineering disciplines. |
deep learning diagram tool: Deep Learning with PyTorch Luca Pietro Giovanni Antiga, Eli Stevens, Thomas Viehmann, 2020-07-01 “We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production |
deep learning diagram tool: Hands-On Machine Learning with R Brad Boehmke, Brandon M. Greenwell, 2019-11-07 Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data. |
deep learning diagram tool: Cloud Computing Mohammad R. Khosravi, Qiang He, Haipeng Dai, 2022-03-22 This book constitutes the refereed proceedings of the 11th International Conference on Cloud Computing, CloudComp 2021, held in December 2021. Due to COVID-19 pandemic the conference was held virtually. The 17 full papers were carefully reviewed and selected from 40 submissions and detail cloud computing technologies for efficient and intelligent computing in secure and smart environments with distributed devices. The theme of CloudComp 2021 was “Cloud Computing for Secure and Smart Applications”. The book is organized in three general areas of data analytics for cloud systems with distributed applications, cloud architecture and challenges in real-world use, and security in cloud/edge platforms. |
deep learning diagram tool: Verified Software. Theories, Tools and Experiments Andrew Reynolds, |
deep learning diagram tool: Machine Learning and Knowledge Extraction Andreas Holzinger, Peter Kieseberg, A Min Tjoa, Edgar Weippl, 2018-08-23 This book constitutes the refereed proceedings of the IFIP TC 5, WG 8.4, 8.9, 12.9 International Cross-Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2018, held in Hamburg, Germany, in September 2018. The 25 revised full papers presented were carefully reviewed and selected from 45 submissions. The papers are clustered under the following topical sections: MAKE-Main Track, MAKE-Text, MAKE-Smart Factory, MAKE-Topology, and MAKE Explainable AI. |
deep learning diagram tool: Intelligent Computing Theories and Application De-Shuang Huang, Kang-Hyun Jo, Jianqiang Li, Valeriya Gribova, Prashan Premaratne, 2021-08-09 This two-volume set of LNCS 12836 and LNCS 12837 constitutes - in conjunction with the volume LNAI 12838 - the refereed proceedings of the 17th International Conference on Intelligent Computing, ICIC 2021, held in Shenzhen, China in August 2021. The 192 full papers of the three proceedings volumes were carefully reviewed and selected from 458 submissions. The ICIC theme unifies the picture of contemporary intelligent computing techniques as an integral concept that highlights the trends in advanced computational intelligence and bridges theoretical research with applications. The theme for this conference is “Advanced Intelligent Computing Methodologies and Applications.” The papers are organized in the following subsections: Artificial Intelligence in Real World Applications, Biomedical Informatics Theory and Methods, Complex Diseases Informatics, Gene Regulation Modeling and Analysis, Intelligent Computing in Computational Biology, and Protein Structure and Function Prediction. |
deep learning diagram tool: Intelligent Systems in Computing and Communication Shreekumar T., |
deep learning diagram tool: Diagrammatic Representation and Inference Jens Lemanski, Mikkel Willum Johansen, Emmanuel Manalo, Petrucio Viana, Reetu Bhattacharjee, Richard Burns, 2024 This book constitutes the refereed proceedings of the 14th International Conference on the Theory and Application of Diagrams, Diagrams 2024, held in Münster, Germany, during September 27–October 1, 2024. The 17 full papers, 19 short papers and 11 papers of other types included in this book were carefully reviewed and selected from 69 submissions. They were organized in topical sections as follows: Keynote Talks; Analysis of Diagrams; Euler and Venn Diagrams; Diagrams in Logic; Diagrams and Applications; Diagram Tools; Historical Aspects of Diagrams; and Posters. |
deep learning diagram tool: Intelligent Systems Design and Applications Ajith Abraham, Niketa Gandhi, Thomas Hanne, Tzung-Pei Hong, Tatiane Nogueira Rios, Weiping Ding, 2022-03-26 This book highlights recent research on intelligent systems and nature-inspired computing. It presents 132 selected papers from the 21st International Conference on Intelligent Systems Design and Applications (ISDA 2021), which was held online. The ISDA is a premier conference in the field of computational intelligence, and the latest installment brought together researchers, engineers and practitioners whose work involves intelligent systems and their applications in industry. Including contributions by authors from 34 countries, the book offers a valuable reference guide for all researchers, students and practitioners in the fields of Computer Science and Engineering. |
deep learning diagram tool: Mobility Patterns, Big Data and Transport Analytics Constantinos Antoniou, Loukas Dimitriou, Francisco Pereira, 2018-11-27 Mobility Patterns, Big Data and Transport Analytics provides a guide to the new analytical framework and its relation to big data, focusing on capturing, predicting, visualizing and controlling mobility patterns - a key aspect of transportation modeling. The book features prominent international experts who provide overviews on new analytical frameworks, applications and concepts in mobility analysis and transportation systems. Users will find a detailed, mobility 'structural' analysis and a look at the extensive behavioral characteristics of transport, observability requirements and limitations for realistic transportation applications and transportation systems analysis that are related to complex processes and phenomena. This book bridges the gap between big data, data science, and transportation systems analysis with a study of big data's impact on mobility and an introduction to the tools necessary to apply new techniques. The book covers in detail, mobility 'structural' analysis (and its dynamics), the extensive behavioral characteristics of transport, observability requirements and limitations for realistic transportation applications, and transportation systems analysis related to complex processes and phenomena. The book bridges the gap between big data, data science, and Transportation Systems Analysis with a study of big data's impact on mobility, and an introduction to the tools necessary to apply new techniques. - Guides readers through the paradigm-shifting opportunities and challenges of handling Big Data in transportation modeling and analytics - Covers current analytical innovations focused on capturing, predicting, visualizing, and controlling mobility patterns, while discussing future trends - Delivers an introduction to transportation-related information advances, providing a benchmark reference by world-leading experts in the field - Captures and manages mobility patterns, covering multiple purposes and alternative transport modes, in a multi-disciplinary approach - Companion website features videos showing the analyses performed, as well as test codes and data-sets, allowing readers to recreate the presented analyses and apply the highlighted techniques to their own data |
deep learning diagram tool: Topology in Real-World Machine Learning and Data Analysis Kathryn Hess, Frédéric Chazal, Umberto Lupo, 2022-11-07 |
deep learning diagram tool: Applied OSS Reliability Assessment Modeling, AI and Tools Yoshinobu Tamura, |
deep learning diagram tool: Artificial Intelligence with Python Prateek Joshi, 2017-01-27 Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application. |
deep learning diagram tool: Evaluation of Novel Approaches to Software Engineering Ernesto Damiani, George Spanoudakis, Leszek Maciaszek, 2018-06-30 This book constitutes the thoroughly refereed proceedings of the 12th International Conference on Evaluation of Novel Approaches to Software Engineering, ENASE 2017, held in Porto, Portugal, in April 2017. The 12 full papers presented were carefully reviewed and selected from 102 submissions. The mission of ENASE is to be a prime international forum to discuss and publish research findings and IT industry experiences with relation to the evaluation of novel approaches to software engineering. The conference acknowledges necessary changes in systems and software thinking due to contemporary shifts of computing paradigm to e-services, cloud computing, mobile connectivity, business processes, and societal participation. |
deep learning diagram tool: Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments Raj, Alex Noel Joseph, Mahesh, Vijayalakshmi G. V., Nersisson, Ruban, 2020-12-25 Recent advancements in imaging techniques and image analysis has broadened the horizons for their applications in various domains. Image analysis has become an influential technique in medical image analysis, optical character recognition, geology, remote sensing, and more. However, analysis of images under constrained and unconstrained environments require efficient representation of the data and complex models for accurate interpretation and classification of data. Deep learning methods, with their hierarchical/multilayered architecture, allow the systems to learn complex mathematical models to provide improved performance in the required task. The Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments provides a critical examination of the latest advancements, developments, methods, systems, futuristic approaches, and algorithms for image analysis and addresses its challenges. Highlighting concepts, methods, and tools including convolutional neural networks, edge enhancement, image segmentation, machine learning, and image processing, the book is an essential and comprehensive reference work for engineers, academicians, researchers, and students. |
deep learning diagram tool: Computer Science – CACIC 2022 Patricia Pesado, 2023-05-26 This book constitutes the refereed proceedings of the 28th Argentine Congress on Computer Science, CACIC 2022, held in La Rioja, Argentina, during October 3–6, 2022. The 20 full papers included in this book were carefully reviewed and selected from 184 submissions. They were organized in topical sections as follows: Agents and Systems; Technology Applied to Education; Graphic Computation, Images and Visualization; Software Engineering; Databases and Data Mining; Hardware Architectures, Networks, and Operating Systems; Innovation in Software Systems; Signal Processing and Real-Time Systems; Innovation in Computer Science Education; and Digital Goverance and Smart Cities. |
deep learning diagram tool: Deep Learning Applications, Volume 2 M. Arif Wani, Taghi Khoshgoftaar, Vasile Palade, 2020-12-14 This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers. |
deep learning diagram tool: Society Of Mind Marvin Minsky, 1988-03-15 Computing Methodologies -- Artificial Intelligence. |
deep learning diagram tool: Innovative Instructional Design Methods and Tools for Improved Teaching Khaldi, Mohamed, 2024-02-14 In the complex field of academic scholarship, educators and scholars often encounter the challenge of designing effective learning scenarios that align with various educational objectives. The process involves meticulous planning, consideration of diverse pedagogical approaches, and adapting strategies to different circumstances and situations. The need for innovative solutions in pedagogy has never been more pressing, with topics ranging from instructional design to emerging techno pedagogical practices demanding attention. Academic scholars are yearning for a comprehensive guide that not only dissects the intricacies of these challenges but also offers transformative solutions to navigate the evolving landscape of education. Innovative Instructional Design Methods and Tools for Improved Teaching is a groundbreaking book meticulously crafted to address the pressing issues faced by academic scholars today. This book transcends the conventional boundaries of educational discourse, offering a roadmap for designing learning activities beyond routine exercises. It unveils a comprehensive approach, integrating pedagogical strategies and innovative teaching practices, providing educators with the tools they need to revolutionize their approach to instruction. This book is a solution to the challenges educators face in the contemporary academic landscape, providing a transformative guide for those seeking to excel in the dynamic field of pedagogy. |
deep learning diagram tool: Sustainable Science and Intelligent Technologies for Societal Development Mishra, Brojo Kishore, 2023-09-18 In today's world, the pressing challenges of sustainable development and societal progress demand innovative solutions that harness the power of science and technology. From climate change to resource depletion and social inequalities, the urgency to find sustainable, intelligent, and ethical approaches has never been greater. Academic scholars and researchers play a crucial role in driving these advancements but often struggle to find comprehensive resources that bridge the gap between theory and real-world applications. The need of the hour is a definitive guide that unites expertise from diverse disciplines and offers practical insights into leveraging sustainable science and intelligent technologies to create meaningful societal development. Sustainable Science and Intelligent Technologies for Societal Development, edited by Brojo Kishore Mishra of GIET University, India, is the much-awaited solution to the challenges faced by academic scholars and researchers. This persuasive book brings together an esteemed collection of leading experts, academics, and industry professionals, all dedicated to addressing global challenges through the lens of applied sciences and intelligent technology applications. By presenting a wide range of innovative topics, such as renewable energy, smart healthcare, sustainable finance, and more, the book serves as a comprehensive resource that empowers scholars with actionable knowledge and innovative ideas. The book not only covers the theoretical aspects but also delves into the ethical considerations essential in shaping the future. In a world increasingly dependent on technology, it is vital to ensure that societal development aligns with principles of inclusivity, fairness, and environmental responsibility. With a focus on the United Nations Sustainable Development Goals (SDGs), the book provides a clear roadmap for scholars to contribute meaningfully to global progress. By offering concrete examples and real-world case studies, the book enables researchers to grasp the potential impact of their work, fostering collaborations that transcend traditional disciplinary boundaries. Sustainable Science and Intelligent Technologies for Societal Development is the go-to resource for academic scholars, scientists, researchers, innovators, industry professionals, and students who seek to be effective in the world. As a comprehensive guide that blends sustainable science and intelligent technologies with ethical considerations, this book equips its readers to create tangible solutions that address pressing global challenges. Through collective knowledge and interdisciplinary collaboration, this book stands as a beacon of hope and inspiration for driving meaningful societal development, paving the way for a more sustainable and prosperous future. |
deep learning diagram tool: Advanced Informatics for Computing Research Ashish Kumar Luhach, Dharm Singh Jat, Kamarul Bin Ghazali Hawari, Xiao-Zhi Gao, Pawan Lingras, 2022-06-24 This volume constitutes selected and revised papers of the 5th International Conference on Advanced Informatics for Computing Research, ICAICR 2021, held in Gurugram, India, in December 2021. The 17 revised full papers and 6 short papers presented were carefully reviewed and selected from 306 submissions. The papers targeted state-of-the-art as well as emerging topics pertaining to advanced informatics for computing research and its implementation for engineering applications. |
deep learning diagram tool: Handbook of Research on Smart Technology Models for Business and Industry Thomas, J. Joshua, Fiore, Ugo, Lechuga, Gilberto Perez, Kharchenko, Valeriy, Vasant, Pandian, 2020-06-19 Advances in machine learning techniques and ever-increasing computing power has helped create a new generation of hardware and software technologies with practical applications for nearly every industry. As the progress has, in turn, excited the interest of venture investors, technology firms, and a growing number of clients, implementing intelligent automation in both physical and information systems has become a must in business. Handbook of Research on Smart Technology Models for Business and Industry is an essential reference source that discusses relevant abstract frameworks and the latest experimental research findings in theory, mathematical models, software applications, and prototypes in the area of smart technologies. Featuring research on topics such as digital security, renewable energy, and intelligence management, this book is ideally designed for machine learning specialists, industrial experts, data scientists, researchers, academicians, students, and business professionals seeking coverage on current smart technology models. |
deep learning diagram tool: Learning in a Digital World Paloma Díaz, Andri Ioannou, Kaushal Kumar Bhagat, J. Michael Spector, 2019-06-29 This book aims at guiding the educators from a variety of available technologies to support learning and teaching by discussing the learning benefits and the challenges that interactive technology imposes. This guidance is based on practical experiences gathered through developing and integrating them into varied educational settings. It compiles experiences gained with various interactive technologies, offering a comprehensive perspective on the use and potential value of interactive technologies to support learning and teaching. Taken together, the chapters provide a broader view that does not focus exclusively on the uses of technology in educational settings, but also on the impact and ability of technology to improve the learning and teaching processes. The book addresses the needs of researchers, educators and other stakeholders in the area of education interested in learning how interactive technologies can be used to overcome key educational challenges. |
DeepL Translate: The world's most accurate translator
Translate texts & full document files instantly. Accurate translations for individuals and Teams. Millions translate with DeepL every day.
DeepSeek | 深度求索
深度求索(DeepSeek),成立于2023年,专注于研究世界领先的通用人工智能底层模型与技术,挑战人工智能前沿性难题。 基于自研训练框架、自建智算集群和万卡算力等资源,深度求 …
DEEP Definition & Meaning - Merriam-Webster
The meaning of DEEP is extending far from some surface or area. How to use deep in a sentence. Synonym Discussion of Deep.
DEEP definition and meaning | Collins English Dictionary
If you describe someone as deep, you mean that they are quiet and reserved in a way that makes you think that they have good qualities such as intelligence or determination.
DeepL features to help elevate your language
Whether crafting an email, translating a document, or re-writing a text, clear and effective communication is paramount. DeepL is your go-to solution to all language-centric …
Deep - definition of deep by The Free Dictionary
Coming from or penetrating to a depth: a deep sigh. g. Sports Located or taking place near the outer boundaries of the area of play: deep left field. 2. Extending a specific distance in a given …
What does DEEP mean? - Definitions.net
Profound, having great meaning or import, but possibly obscure or not obvious. That is a deep thought! To a significant, not superficial, extent. In extent in a direction away from the …
DeepL Translator - Wikipedia
DeepL Translator is a neural machine translation service that was launched in August 2017 and is owned by Cologne -based DeepL SE. The translating system was first developed within …
DEEP | definition in the Cambridge English Dictionary
DEEP meaning: 1. going or being a long way down from the top or surface, or being of a particular distance from…. Learn more.
DEEP Definition & Meaning | Dictionary.com
in difficult or serious circumstances; in trouble.in a situation beyond the range of one's capability or skill:You're a good student, but you'll be in deep water in medical school.
DeepL Translate: The world's most accurate translator
Translate texts & full document files instantly. Accurate translations for individuals and Teams. Millions …
DeepSeek | 深度求索
深度求索(DeepSeek),成立于2023年,专注于研究世界领先的通用人工智能底层模型与技术,挑战人工智能前沿性难题。 基于自 …
DEEP Definition & Meaning - Merriam-Webster
The meaning of DEEP is extending far from some surface or area. How to use deep in a sentence. Synonym …
DEEP definition and meaning | Collins English Dictionary
If you describe someone as deep, you mean that they are quiet and reserved in a way that makes you think that …
DeepL features to help elevate your language
Whether crafting an email, translating a document, or re-writing a text, clear and effective communication is …