Advertisement
definition of term in math: A Friendly Introduction to Mathematical Logic Christopher C. Leary, Lars Kristiansen, 2015 At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises. |
definition of term in math: Proofs and Refutations Imre Lakatos, 1976 Proofs and Refutations is for those interested in the methodology, philosophy and history of mathematics. |
definition of term in math: Math Dictionary for Kids Theresa R. Fitzgerald, 2006 Contains more than four hundred math definitions that will help students solve many of the math challenges they face. Includes instructions for basic operations and tables of commonly-used facts and equivalents. |
definition of term in math: Introductory Business Statistics 2e Alexander Holmes, Barbara Illowsky, Susan Dean, 2023-12-13 Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License. |
definition of term in math: College Algebra Jay Abramson, 2018-01-07 College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory |
definition of term in math: Math Dictionary for Kids Theresa R. Fitzgerald, 2014 Ideal for kids in grades 4-9, this handy, updated reference of more than 400 full-color, illustrated definitions will help them quickly find the definitions and illustrated examples they need to to solve many of the math challenges they face. Full color. |
definition of term in math: Sheaves on Manifolds Masaki Kashiwara, Pierre Schapira, 2013-03-14 Sheaf Theory is modern, active field of mathematics at the intersection of algebraic topology, algebraic geometry and partial differential equations. This volume offers a comprehensive and self-contained treatment of Sheaf Theory from the basis up, with emphasis on the microlocal point of view. From the reviews: Clearly and precisely written, and contains many interesting ideas: it describes a whole, largely new branch of mathematics. –Bulletin of the L.M.S. |
definition of term in math: Meaning in Mathematics Education Jeremy Kilpatrick, Celia Hoyles, Ole Skovsmose, 2006-03-30 What does it mean to know mathematics? How does meaning in mathematics education connect to common sense or to the meaning of mathematics itself? How are meanings constructed and communicated and what are the dilemmas related to these processes? There are many answers to these questions, some of which might appear to be contradictory. Thus understanding the complexity of meaning in mathematics education is a matter of huge importance. There are twin directions in which discussions have developed—theoretical and practical—and this book seeks to move the debate forward along both dimensions while seeking to relate them where appropriate. A discussion of meaning can start from a theoretical examination of mathematics and how mathematicians over time have made sense of their work. However, from a more practical perspective, anybody involved in teaching mathematics is faced with the need to orchestrate the myriad of meanings derived from multiple sources that students develop of mathematical knowledge. This book presents a wide variety of theoretical reflections and research results about meaning in mathematics and mathematics education based on long-term and collective reflection by the group of authors as a whole. It is the outcome of the work of the BACOMET (BAsic COmponents of Mathematics Education for Teachers) group who spent several years deliberating on this topic. The ten chapters in this book, both separately and together, provide a substantial contribution to clarifying the complex issue of meaning in mathematics education. This book is of interest to researchers in mathematics education, graduate students of mathematics education, under graduate students in mathematics, secondary mathematics teachers and primary teachers with an interest in mathematics. |
definition of term in math: My philosophical development Bertrand Russell, 1956 |
definition of term in math: Discrete Mathematics Oscar Levin, 2016-08-16 This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the introduction to proof course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions. |
definition of term in math: Math Dictionary Eula Ewing Monroe, 2006-10-01 Here's real help for math students. From abacus to zero property of multiplication, this handy reference guide for students contains more than five hundred common mathematical terms. Written in simple language and illustrated with hundreds of helpful photographs and drawings, Math Dictionary takes the mystery out of math. |
definition of term in math: Math Dictionary for Kids , 2021-09-03 Equipped with the #1 guide to help kids with math homework, children will be able to quickly find the definitions and illustrated examples that will enable them to solve many of the math challenges they face. Covering everything from addend to zero, the fifth edition of the best-selling Math Dictionary for Kids gives students in grades 4-9 more than 400 definitions, full-color illustrations, and examples that can help them solve math problems. This handbook includes illustrated, concise explanations of the most common terms used in general math classes, categorized by subjects that include measurement, algebra, geometry, fractions and decimals, statistics and probability, and problem solving. This edition also discusses how students can use manipulatives and basic math tools to improve their understanding and includes handy measurement conversion tables. Each term has a concise definition and an example or illustration. Perfect for both kids and their parents looking to help them with math homework! Grades 4-9 |
definition of term in math: Basic Category Theory Tom Leinster, 2014-07-24 A short introduction ideal for students learning category theory for the first time. |
definition of term in math: Prealgebra 2e Lynn Marecek, Maryanne Anthony-Smith, Andrea Honeycutt Mathis, 2020-03-11 The images in this book are in color. For a less-expensive grayscale paperback version, see ISBN 9781680923254. Prealgebra 2e is designed to meet scope and sequence requirements for a one-semester prealgebra course. The text introduces the fundamental concepts of algebra while addressing the needs of students with diverse backgrounds and learning styles. Each topic builds upon previously developed material to demonstrate the cohesiveness and structure of mathematics. Students who are taking basic mathematics and prealgebra classes in college present a unique set of challenges. Many students in these classes have been unsuccessful in their prior math classes. They may think they know some math, but their core knowledge is full of holes. Furthermore, these students need to learn much more than the course content. They need to learn study skills, time management, and how to deal with math anxiety. Some students lack basic reading and arithmetic skills. The organization of Prealgebra makes it easy to adapt the book to suit a variety of course syllabi. |
definition of term in math: Math with Bad Drawings Ben Orlin, 2018-09-18 A hilarious reeducation in mathematics-full of joy, jokes, and stick figures-that sheds light on the countless practical and wonderful ways that math structures and shapes our world. In Math With Bad Drawings, Ben Orlin reveals to us what math actually is; its myriad uses, its strange symbols, and the wild leaps of logic and faith that define the usually impenetrable work of the mathematician. Truth and knowledge come in multiple forms: colorful drawings, encouraging jokes, and the stories and insights of an empathetic teacher who believes that math should belong to everyone. Orlin shows us how to think like a mathematician by teaching us a brand-new game of tic-tac-toe, how to understand an economic crises by rolling a pair of dice, and the mathematical headache that ensues when attempting to build a spherical Death Star. Every discussion in the book is illustrated with Orlin's trademark bad drawings, which convey his message and insights with perfect pitch and clarity. With 24 chapters covering topics from the electoral college to human genetics to the reasons not to trust statistics, Math with Bad Drawings is a life-changing book for the math-estranged and math-enamored alike. |
definition of term in math: What is Mathematics? Richard Courant, Herbert Robbins, 1996 The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but not real understanding or greater intellectual independence. The new edition of this classic work seeks to address this problem. Its goal is to put the meaning back into mathematics. Lucid . . . easily understandable.--Albert Einstein. 301 linecuts. |
definition of term in math: Introductory Statistics 2e Barbara Illowsky, Susan Dean, 2023-12-13 Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License. |
definition of term in math: An Introduction to Algebraic Structures Joseph Landin, 2012-08-29 This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition. |
definition of term in math: Euclid's Elements Euclid, Dana Densmore, 2002 The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary --from book jacket. |
definition of term in math: Introduction to Mathematical Philosophy Bertrand Russell, 1920 |
definition of term in math: The Concise Oxford Dictionary of Mathematics Christopher Clapham, James Nicholson, 2014-05-22 Authoritative and reliable, this A-Z provides jargon-free definitions for even the most technical mathematical terms. With over 3,000 entries ranging from Achilles paradox to zero matrix, it covers all commonly encountered terms and concepts from pure and applied mathematics and statistics, for example, linear algebra, optimisation, nonlinear equations, and differential equations. In addition, there are entries on major mathematicians and on topics of more general interest, such as fractals, game theory, and chaos. Using graphs, diagrams, and charts to render definitions as comprehensible as possible, entries are clear and accessible. Almost 200 new entries have been added to this edition, including terms such as arrow paradox, nested set, and symbolic logic. Useful appendices follow the A-Z dictionary and include lists of Nobel Prize winners and Fields' medallists, Greek letters, formulae, and tables of inequalities, moments of inertia, Roman numerals, a geometry summary, additional trigonometric values of special angles, and many more. This edition contains recommended web links, which are accessible and kept up to date via the Dictionary of Mathematics companion website. Fully revised and updated in line with curriculum and degree requirements, this dictionary is indispensable for students and teachers of mathematics, and for anyone encountering mathematics in the workplace. |
definition of term in math: How Numbers Work New Scientist, 2018-03-21 Think of a number between one and ten. No, hang on, let's make this interesting. Between zero and infinity. Even if you stick to the whole numbers, there are a lot to choose from - an infinite number in fact. Throw in decimal fractions and infinity suddenly gets an awful lot bigger (is that even possible?) And then there are the negative numbers, the imaginary numbers, the irrational numbers like pi which never end. It literally never ends. The world of numbers is indeed strange and beautiful. Among its inhabitants are some really notable characters - pi, e, the imaginary number i and the famous golden ratio to name just a few. Prime numbers occupy a special status. Zero is very odd indeed: is it a number, or isn't it? How Numbers Work takes a tour of this mind-blowing but beautiful realm of numbers and the mathematical rules that connect them. Not only that, but take a crash course on the biggest unsolved problems that keep mathematicians up at night, find out about the strange and unexpected ways mathematics influences our everyday lives, and discover the incredible connection between numbers and reality itself. ABOUT THE SERIES New Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context. |
definition of term in math: What Are Tensors Exactly? Hongyu Guo, 2021-06-16 Tensors have numerous applications in physics and engineering. There is often a fuzzy haze surrounding the concept of tensor that puzzles many students. The old-fashioned definition is difficult to understand because it is not rigorous; the modern definitions are difficult to understand because they are rigorous but at a cost of being more abstract and less intuitive.The goal of this book is to elucidate the concepts in an intuitive way but without loss of rigor, to help students gain deeper understanding. As a result, they will not need to recite those definitions in a parrot-like manner any more. This volume answers common questions and corrects many misconceptions about tensors. A large number of illuminating illustrations helps the reader to understand the concepts more easily.This unique reference text will benefit researchers, professionals, academics, graduate students and undergraduate students. |
definition of term in math: The Baller Teacher Playbook Tyler Tarver Ed S, 2021-02-18 Does your classroom run the way you want? Most people enter the teaching profession wanting to make a difference in young people's lives. However, more and more teachers feel lost, frustrated, and overwhelmed with everything they're required to do. It's hard to be successful without a clear plan on getting control of your classroom, empowering your students, and making the learning experience more enjoyable for you and your students. These 18 chapters are crucial for any educator who wants to take their teaching to the next level. Teacher, Principal, Director, Dean, and YouTube/TikTok teacher, Tyler Tarver knows that education is more than just standing in front of students lecturing them on a specific topic - it's a culture of learning that educators foster to train the next generation. If you are attempting to be the best educator you can in the environment you're in, you need ideas and encouragement from someone who's been exactly where you are. Even if you had the time, money, and support we know teachers deserve, we know that applying any knowledge always has a greater impact when you're able to give personal and practical application to the ideas you know matter. Besides sitting through 60+ hours a year of professional development, there is another way to incrementally improve your teaching week after week. Spoiler Alert: It can also be fun. Tyler Tarver learned how to create the culture he wanted in his classroom. He was able to pass this on to any educator who wanted to get excited about teaching and have a deeper impact on their students. He wrote The Baller Teacher Playbook to teach others what it takes to expand your teaching and create a community of happy and engaged learners. These short, weekly chapters and accompanying resources will add enormous value to your classroom and the school you work for. In this 18-week guide, readers will be introduced to the top areas where truly successful teachers and their students excel: Reason vs Excuses: How do you overcome the hurdles inherent in education? Fun: How do you get yourself and students excited about learning? Creativity: How do you create a culture where every day is unexpected but not chaotic? Positivity: How can we roll with the punches but not have to fake it? Authenticity: How can I be myself but genuinely connect with young people? Leadership: How do I get my students to lead without me? Collaboration: How do I work with my administrators, colleagues, and parents to better every student's education? Diversity: How do I help build empathy and understanding among myself and my students? Development: How am I always getting better? Plus more! The Baller Teacher Playbook is the must-have guide for anyone who feels lost or overwhelmed by the current educational climate, even if they have been teaching for years. Learn from a fellow educator who had their fair share of mistakes and successes through the simple but effective tactics shared in these pages. Take things further: If you want to move forward even faster as an educational professional, read a chapter once a week with your team, and come together at weekly meetings to discuss experience, ideas, triumphs, and a community of educators trying to improve themselves and their classroom. |
definition of term in math: An Introduction to Measure Theory Terence Tao, 2021-09-03 This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book. |
definition of term in math: Origins of Mathematical Words Anthony Lo Bello, 2013-12-16 The most comprehensive math root dictionary ever published. Outstanding Academic Title, Choice Do you ever wonder about the origins of mathematical terms such as ergodic, biholomorphic, and strophoid? Here Anthony Lo Bello explains the roots of these and better-known words like asymmetric, gradient, and average. He provides Greek, Latin, and Arabic text in its original form to enhance each explanation. This sophisticated, one-of-a-kind reference for mathematicians and word lovers is based on decades of the author's painstaking research and work. Origins of Mathematical Words supplies definitions for words such as conchoid (a shell-shaped curve derived from the Greek noun for mussel) and zenith (Arabic for way overhead), as well as approximation (from the Latin proximus, meaning nearest). These and hundreds of other terms wait to be discovered within the pages of this mathematical and etymological treasure chest. |
definition of term in math: Grit Angela Duckworth, 2016-05-03 In this instant New York Times bestseller, Angela Duckworth shows anyone striving to succeed that the secret to outstanding achievement is not talent, but a special blend of passion and persistence she calls “grit.” “Inspiration for non-geniuses everywhere” (People). The daughter of a scientist who frequently noted her lack of “genius,” Angela Duckworth is now a celebrated researcher and professor. It was her early eye-opening stints in teaching, business consulting, and neuroscience that led to her hypothesis about what really drives success: not genius, but a unique combination of passion and long-term perseverance. In Grit, she takes us into the field to visit cadets struggling through their first days at West Point, teachers working in some of the toughest schools, and young finalists in the National Spelling Bee. She also mines fascinating insights from history and shows what can be gleaned from modern experiments in peak performance. Finally, she shares what she’s learned from interviewing dozens of high achievers—from JP Morgan CEO Jamie Dimon to New Yorker cartoon editor Bob Mankoff to Seattle Seahawks Coach Pete Carroll. “Duckworth’s ideas about the cultivation of tenacity have clearly changed some lives for the better” (The New York Times Book Review). Among Grit’s most valuable insights: any effort you make ultimately counts twice toward your goal; grit can be learned, regardless of IQ or circumstances; when it comes to child-rearing, neither a warm embrace nor high standards will work by themselves; how to trigger lifelong interest; the magic of the Hard Thing Rule; and so much more. Winningly personal, insightful, and even life-changing, Grit is a book about what goes through your head when you fall down, and how that—not talent or luck—makes all the difference. This is “a fascinating tour of the psychological research on success” (The Wall Street Journal). |
definition of term in math: Advanced Mathematical Thinking David Tall, 2006-04-11 This book is the first major study of advanced mathematical thinking as performed by mathematicians and taught to students in senior high school and university. Topics covered include the psychology of advanced mathematical thinking, the processes involved, mathematical creativity, proof, the role of definitions, symbols, and reflective abstraction. It is highly appropriate for the college professor in mathematics or the general mathematics educator. |
definition of term in math: Mathematics and the Imagination Edward Kasner, James Newman, 2013-04-22 With wit and clarity, the authors progress from simple arithmetic to calculus and non-Euclidean geometry. Their subjects: geometry, plane and fancy; puzzles that made mathematical history; tantalizing paradoxes; more. Includes 169 figures. |
definition of term in math: Graduate Algebra Louis Halle Rowen, 2006 This book is an expanded text for a graduate course in commutative algebra, focusing on the algebraic underpinnings of algebraic geometry and of number theory. Accordingly, the theory of affine algebras is featured, treated both directly and via the theory of Noetherian and Artinian modules, and the theory of graded algebras is included to provide the foundation for projective varieties. Major topics include the theory of modules over a principal ideal domain, and its applicationsto matrix theory (including the Jordan decomposition), the Galois theory of field extensions, transcendence degree, the prime spectrum of an algebra, localization, and the classical theory of Noetherian and Artinian rings. Later chapters include some algebraic theory of elliptic curves (featuring theMordell-Weil theorem) and valuation theory, including local fields. One feature of the book is an extension of the text through a series of appendices. This permits the inclusion of more advanced material, such as transcendental field extensions, the discriminant and resultant, the theory of Dedekind domains, and basic theorems of rings of algebraic integers. An extended appendix on derivations includes the Jacobian conjecture and Makar-Limanov's theory of locally nilpotent derivations. Grobnerbases can be found in another appendix. Exercises provide a further extension of the text. The book can be used both as a textbook and as a reference source. |
definition of term in math: Foundations and Fundamental Concepts of Mathematics Howard Whitley Eves, 1997-01-01 This third edition of a popular, well-received text offers undergraduates an opportunity to obtain an overview of the historical roots and the evolution of several areas of mathematics. The selection of topics conveys not only their role in this historical development of mathematics but also their value as bases for understanding the changing nature of mathematics. Among the topics covered in this wide-ranging text are: mathematics before Euclid, Euclid's Elements, non-Euclidean geometry, algebraic structure, formal axiomatics, the real numbers system, sets, logic and philosophy and more. The emphasis on axiomatic procedures provides important background for studying and applying more advanced topics, while the inclusion of the historical roots of both algebra and geometry provides essential information for prospective teachers of school mathematics. The readable style and sets of challenging exercises from the popular earlier editions have been continued and extended in the present edition, making this a very welcome and useful version of a classic treatment of the foundations of mathematics. A truly satisfying book. — Dr. Bruce E. Meserve, Professor Emeritus, University of Vermont. |
definition of term in math: Handbook of Mathematics for Engineers and Scientists Andrei D. Polyanin, Alexander V. Manzhirov, 2006-11-27 Covering the main fields of mathematics, this handbook focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. The authors describe formulas, methods, equations, and solutions that are frequently used in scientific and engineering applications and present classical as well as newer solution methods for various mathematical equations. The book supplies numerous examples, graphs, figures, and diagrams and contains many results in tabular form, including finite sums and series and exact solutions of differential, integral, and functional equations. |
definition of term in math: Science Literacy National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Committee on Science Literacy and Public Perception of Science, 2016-11-14 Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to scienceâ€whether using knowledge or creating itâ€necessitates some level of familiarity with the enterprise and practice of science: we refer to this as science literacy. Science literacy is desirable not only for individuals, but also for the health and well- being of communities and society. More than just basic knowledge of science facts, contemporary definitions of science literacy have expanded to include understandings of scientific processes and practices, familiarity with how science and scientists work, a capacity to weigh and evaluate the products of science, and an ability to engage in civic decisions about the value of science. Although science literacy has traditionally been seen as the responsibility of individuals, individuals are nested within communities that are nested within societiesâ€and, as a result, individual science literacy is limited or enhanced by the circumstances of that nesting. Science Literacy studies the role of science literacy in public support of science. This report synthesizes the available research literature on science literacy, makes recommendations on the need to improve the understanding of science and scientific research in the United States, and considers the relationship between scientific literacy and support for and use of science and research. |
definition of term in math: Handbook of Discrete and Combinatorial Mathematics Kenneth H. Rosen, 2017-10-19 Handbook of Discrete and Combinatorial Mathematics provides a comprehensive reference volume for mathematicians, computer scientists, engineers, as well as students and reference librarians. The material is presented so that key information can be located and used quickly and easily. Each chapter includes a glossary. Individual topics are covered in sections and subsections within chapters, each of which is organized into clearly identifiable parts: definitions, facts, and examples. Examples are provided to illustrate some of the key definitions, facts, and algorithms. Some curious and entertaining facts and puzzles are also included. Readers will also find an extensive collection of biographies. This second edition is a major revision. It includes extensive additions and updates. Since the first edition appeared in 1999, many new discoveries have been made and new areas have grown in importance, which are covered in this edition. |
definition of term in math: Meaning in Mathematics John Polkinghorne, 2011-05-19 Is mathematics a highly sophisticated intellectual game in which the adepts display their skill by tackling invented problems, or are mathematicians engaged in acts of discovery as they explore an independent realm of mathematical reality? Why does this seemingly abstract discipline provide the key to unlocking the deep secrets of the physical universe? How one answers these questions will significantly influence metaphysical thinking about reality. This book is intended to fill a gap between popular 'wonders of mathematics' books and the technical writings of the philosophers of mathematics. The chapters are written by some of the world's finest mathematicians, mathematical physicists and philosophers of mathematics, each giving their perspective on this fascinating debate. Every chapter is followed by a short response from another member of the author team, reinforcing the main theme and raising further questions. Accessible to anyone interested in what mathematics really means, and useful for mathematicians and philosophers of science at all levels, Meaning in Mathematics offers deep new insights into a subject many people take for granted. |
definition of term in math: Principia Mathematica Alfred North Whitehead, Bertrand Russell, 1910 |
definition of term in math: What is Mathematics? Richard Courant, Herbert Robbins, 1978 |
definition of term in math: Prealgebra Lynn Marecek, MaryAnne Anthony-Smith, 2015-09-25 Prealgebra is designed to meet scope and sequence requirements for a one-semester prealgebra course. The text introduces the fundamental concepts of algebra while addressing the needs of students with diverse backgrounds and learning styles. Each topic builds upon previously developed material to demonstrate the cohesiveness and structure of mathematics. Prealgebra follows a nontraditional approach in its presentation of content. The beginning, in particular, is presented as a sequence of small steps so that students gain confidence in their ability to succeed in the course. The order of topics was carefully planned to emphasize the logical progression throughout the course and to facilitate a thorough understanding of each concept. As new ideas are presented, they are explicitly related to previous topics.--BC Campus website. |
definition of term in math: Algebra and Trigonometry Jay P. Abramson, Valeree Falduto, Rachael Gross (Mathematics teacher), David Lippman, Rick Norwood, Melonie Rasmussen, Nicholas Belloit, Jean-Marie Magnier, Harold Whipple, Christina Fernandez, 2015-02-13 The text is suitable for a typical introductory algebra course, and was developed to be used flexibly. While the breadth of topics may go beyond what an instructor would cover, the modular approach and the richness of content ensures that the book meets the needs of a variety of programs.--Page 1. |
definition of term in math: The Problem with Math Is English Concepcion Molina, 2012-09-04 Teaching K-12 math becomes an easier task when everyone understands the language, symbolism, and representation of math concepts Published in partnership with SEDL, The Problem with Math Is English illustrates how students often understand fundamental mathematical concepts at a superficial level. Written to inspire ?aha? moments, this book enables teachers to help students identify and comprehend the nuances and true meaning of math concepts by exploring them through the lenses of language and symbolism, delving into such essential topics as multiplication, division, fractions, place value, proportional reasoning, graphs, slope, order of operations, and the distributive property. Offers a new way to approach teaching math content in a way that will improve how all students, and especially English language learners, understand math Emphasizes major attributes of conceptual understanding in mathematics, including simple yet deep definitions of key terms, connections among key topics, and insightful interpretation This important new book fills a gap in math education by illustrating how a deeper knowledge of math concepts can be developed in all students through a focus on language and symbolism. |
DEFINITION Definition & Meaning - Merriam-Webster
The meaning of DEFINITION is a statement of the meaning of a word or word group or a sign or symbol. How to use definition in a sentence.
DEFINITION Definition & Meaning - Dictionary.com
Definition definition: the act of defining, or of making something definite, distinct, or clear.. See examples of DEFINITION used in a sentence.
DEFINITION | English meaning - Cambridge Dictionary
DEFINITION definition: 1. a statement that explains the meaning of a word or phrase: 2. a description of the features and…. Learn more.
DEFINITION definition and meaning | Collins English Dictionary
A definition is a statement giving the meaning of a word or expression, especially in a dictionary.
definition noun - Definition, pictures, pronunciation and usage …
Definition of definition noun in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Definition - Wikipedia
A nominal definition is the definition explaining what a word means (i.e., which says what the "nominal essence" is), and is definition in the classical sense as given above. A real definition, …
Definition - definition of definition by The Free Dictionary
Here is one definition from a popular dictionary: 'Any instrument or organization by which power is applied and made effective, or a desired effect produced.' Well, then, is not a man a machine?
definition - Wiktionary, the free dictionary
Jun 8, 2025 · definition (countable and uncountable, plural definitions) ( semantics , lexicography ) A statement of the meaning of a word , word group, sign , or symbol ; especially, a dictionary …
Definition Definition & Meaning | Britannica Dictionary
DEFINITION meaning: 1 : an explanation of the meaning of a word, phrase, etc. a statement that defines a word, phrase, etc.; 2 : a statement that describes what something is
Dictionary.com | Meanings & Definitions of English Words
3 days ago · The world's leading online dictionary: English definitions, synonyms, word origins, example sentences, word games, and more. A trusted authority for 25+ years!
DEFINITION Definition & Meaning - Merriam-Webster
The meaning of DEFINITION is a statement of the meaning of a word or word group or a sign or symbol. …
DEFINITION Definition & Meaning - Dictionary.com
Definition definition: the act of defining, or of making something definite, distinct, or clear.. See examples of DEFINITION used in a …
DEFINITION | English meaning - Cambridge Diction…
DEFINITION definition: 1. a statement that explains the meaning of a word or phrase: 2. a description of the features and…. Learn more.
DEFINITION definition and meaning | Collins English Dict…
A definition is a statement giving the meaning of a word or expression, especially in a dictionary.
definition noun - Definition, pictures, pronunciation and u…
Definition of definition noun in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage …