Advertisement
definition of evidence in science: Science Literacy National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Board on Science Education, Committee on Science Literacy and Public Perception of Science, 2016-11-14 Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to scienceâ€whether using knowledge or creating itâ€necessitates some level of familiarity with the enterprise and practice of science: we refer to this as science literacy. Science literacy is desirable not only for individuals, but also for the health and well- being of communities and society. More than just basic knowledge of science facts, contemporary definitions of science literacy have expanded to include understandings of scientific processes and practices, familiarity with how science and scientists work, a capacity to weigh and evaluate the products of science, and an ability to engage in civic decisions about the value of science. Although science literacy has traditionally been seen as the responsibility of individuals, individuals are nested within communities that are nested within societiesâ€and, as a result, individual science literacy is limited or enhanced by the circumstances of that nesting. Science Literacy studies the role of science literacy in public support of science. This report synthesizes the available research literature on science literacy, makes recommendations on the need to improve the understanding of science and scientific research in the United States, and considers the relationship between scientific literacy and support for and use of science and research. |
definition of evidence in science: Reproducibility and Replicability in Science National Academies of Sciences, Engineering, and Medicine, Policy and Global Affairs, Committee on Science, Engineering, Medicine, and Public Policy, Board on Research Data and Information, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Board on Mathematical Sciences and Analytics, Division on Earth and Life Studies, Nuclear and Radiation Studies Board, Division of Behavioral and Social Sciences and Education, Committee on National Statistics, Board on Behavioral, Cognitive, and Sensory Sciences, Committee on Reproducibility and Replicability in Science, 2019-10-20 One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science. |
definition of evidence in science: Reference Manual on Scientific Evidence National Research Council, Federal Judicial Center, Policy and Global Affairs, Committee on Science, Technology, and Law, Committee on the Development of the Third Edition of the Reference Manual on Scientific Evidence, 2011-10-26 The Reference Manual on Scientific Evidence, Third Edition, assists judges in managing cases involving complex scientific and technical evidence by describing the basic tenets of key scientific fields from which legal evidence is typically derived and by providing examples of cases in which that evidence has been used. First published in 1994 by the Federal Judicial Center, the Reference Manual on Scientific Evidence has been relied upon in the legal and academic communities and is often cited by various courts and others. Judges faced with disputes over the admissibility of scientific and technical evidence refer to the manual to help them better understand and evaluate the relevance, reliability and usefulness of the evidence being proffered. The manual is not intended to tell judges what is good science and what is not. Instead, it serves to help judges identify issues on which experts are likely to differ and to guide the inquiry of the court in seeking an informed resolution of the conflict. The core of the manual consists of a series of chapters (reference guides) on various scientific topics, each authored by an expert in that field. The topics have been chosen by an oversight committee because of their complexity and frequency in litigation. Each chapter is intended to provide a general overview of the topic in lay terms, identifying issues that will be useful to judges and others in the legal profession. They are written for a non-technical audience and are not intended as exhaustive presentations of the topic. Rather, the chapters seek to provide judges with the basic information in an area of science, to allow them to have an informed conversation with the experts and attorneys. |
definition of evidence in science: Inquiry and the National Science Education Standards National Research Council, Center for Science, Mathematics, and Engineering Education, Committee on Development of an Addendum to the National Science Education Standards on Scientific Inquiry, 2000-05-03 Humans, especially children, are naturally curious. Yet, people often balk at the thought of learning scienceâ€the eyes glazed over syndrome. Teachers may find teaching science a major challenge in an era when science ranges from the hardly imaginable quark to the distant, blazing quasar. Inquiry and the National Science Education Standards is the book that educators have been waiting forâ€a practical guide to teaching inquiry and teaching through inquiry, as recommended by the National Science Education Standards. This will be an important resource for educators who must help school boards, parents, and teachers understand why we can't teach the way we used to. Inquiry refers to the diverse ways in which scientists study the natural world and in which students grasp science knowledge and the methods by which that knowledge is produced. This book explains and illustrates how inquiry helps students learn science content, master how to do science, and understand the nature of science. This book explores the dimensions of teaching and learning science as inquiry for K-12 students across a range of science topics. Detailed examples help clarify when teachers should use the inquiry-based approach and how much structure, guidance, and coaching they should provide. The book dispels myths that may have discouraged educators from the inquiry-based approach and illuminates the subtle interplay between concepts, processes, and science as it is experienced in the classroom. Inquiry and the National Science Education Standards shows how to bring the standards to life, with features such as classroom vignettes exploring different kinds of inquiries for elementary, middle, and high school and Frequently Asked Questions for teachers, responding to common concerns such as obtaining teaching supplies. Turning to assessment, the committee discusses why assessment is important, looks at existing schemes and formats, and addresses how to involve students in assessing their own learning achievements. In addition, this book discusses administrative assistance, communication with parents, appropriate teacher evaluation, and other avenues to promoting and supporting this new teaching paradigm. |
definition of evidence in science: Science and Creationism National Academy of Sciences (U.S.), 1999 This edition of Science and Creationism summarizes key aspects of several of the most important lines of evidence supporting evolution. It describes some of the positions taken by advocates of creation science and presents an analysis of these claims. This document lays out for a broader audience the case against presenting religious concepts in science classes. The document covers the origin of the universe, Earth, and life; evidence supporting biological evolution; and human evolution. (Contains 31 references.) (CCM) |
definition of evidence in science: Science for Policy Handbook Vladimir Sucha, Marta Sienkiewicz, 2020-07-29 Science for Policy Handbook provides advice on how to bring science to the attention of policymakers. This resource is dedicated to researchers and research organizations aiming to achieve policy impacts. The book includes lessons learned along the way, advice on new skills, practices for individual researchers, elements necessary for institutional change, and knowledge areas and processes in which to invest. It puts co-creation at the centre of Science for Policy 2.0, a more integrated model of knowledge-policy relationship. Covers the vital area of science for policymaking Includes contributions from leading practitioners from the Joint Research Centre/European Commission Provides key skills based on the science-policy interface needed for effective evidence-informed policymaking Presents processes of knowledge production relevant for a more holistic science-policy relationship, along with the types of knowledge that are useful in policymaking |
definition of evidence in science: Communicating Science Effectively National Academies of Sciences, Engineering, and Medicine, Division of Behavioral and Social Sciences and Education, Committee on the Science of Science Communication: A Research Agenda, 2017-03-08 Science and technology are embedded in virtually every aspect of modern life. As a result, people face an increasing need to integrate information from science with their personal values and other considerations as they make important life decisions about medical care, the safety of foods, what to do about climate change, and many other issues. Communicating science effectively, however, is a complex task and an acquired skill. Moreover, the approaches to communicating science that will be most effective for specific audiences and circumstances are not obvious. Fortunately, there is an expanding science base from diverse disciplines that can support science communicators in making these determinations. Communicating Science Effectively offers a research agenda for science communicators and researchers seeking to apply this research and fill gaps in knowledge about how to communicate effectively about science, focusing in particular on issues that are contentious in the public sphere. To inform this research agenda, this publication identifies important influences †psychological, economic, political, social, cultural, and media-related †on how science related to such issues is understood, perceived, and used. |
definition of evidence in science: Scientific Evidence Peter Achinstein, 2005-06 Physicists think they have discovered the top quark. Biologists believe in evolution. But what precisely constitutes evidence for such claims, and why? Scientists often disagree with one another over whether or to what extent some evidence counts in favor of a theory because they are operating with different concepts of scientific evidence. These concepts need to be critically explored. Peter Achinstein has gathered some prominent philosophers and historians of science for critical and lively discussions of both general questions about the meaning of evidence and specific ones about evidence for particular scientific theories. Contributors: Peter Achinstein, The Johns Hopkins University; Steven Gimbel, Gettysburg College; Gary Hatfield, University of Pennsylvania; Frederick M. Kronz, University of Texas–Austin; Helen Longino, University of Minnesota; Deborah G. Mayo, Virginia Tech; Amy L. McLaughlin, Florida Atlantic University; John Norton, University of Pittsburgh; Lawrence M. Principe, The Johns Hopkins University; Richard Richards, University of Alabama; Alex Rosenberg, Duke University; Sherrilyn Roush, Rice University; Laura J. Snyder, St. Johns University; Kent Staley, St. Louis University. |
definition of evidence in science: A Framework for K-12 Science Education National Research Council, Division of Behavioral and Social Sciences and Education, Board on Science Education, Committee on a Conceptual Framework for New K-12 Science Education Standards, 2012-02-28 Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments. |
definition of evidence in science: A Dictionary of Forensic Science Suzanne Bell, 2012-02-09 This new dictionary covers a wide range of terms used in the field of forensic science, touching on related disciplines such as chemistry, biology, and anthropology. Case examples, figures, and photographs make it the ideal reference for students and practitioners of forensic science, as well as those with an interest in forensic science. |
definition of evidence in science: Evolution in Hawaii National Academy of Sciences, Steve Olson, 2004-02-10 As both individuals and societies, we are making decisions today that will have profound consequences for future generations. From preserving Earth's plants and animals to altering our use of fossil fuels, none of these decisions can be made wisely without a thorough understanding of life's history on our planet through biological evolution. Companion to the best selling title Teaching About Evolution and the Nature of Science, Evolution in Hawaii examines evolution and the nature of science by looking at a specific part of the world. Tracing the evolutionary pathways in Hawaii, we are able to draw powerful conclusions about evolution's occurrence, mechanisms, and courses. This practical book has been specifically designed to give teachers and their students an opportunity to gain a deeper understanding of evolution using exercises with real genetic data to explore and investigate speciation and the probable order in which speciation occurred based on the ages of the Hawaiian Islands. By focusing on one set of islands, this book illuminates the general principles of evolutionary biology and demonstrate how ongoing research will continue to expand our knowledge of the natural world. |
definition of evidence in science: Strengthening Forensic Science in the United States National Research Council, Division on Engineering and Physical Sciences, Committee on Applied and Theoretical Statistics, Policy and Global Affairs, Committee on Science, Technology, and Law, Committee on Identifying the Needs of the Forensic Sciences Community, 2009-07-29 Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establish and enforce standards within the forensic science community. The benefits of improving and regulating the forensic science disciplines are clear: assisting law enforcement officials, enhancing homeland security, and reducing the risk of wrongful conviction and exoneration. Strengthening Forensic Science in the United States gives a full account of what is needed to advance the forensic science disciplines, including upgrading of systems and organizational structures, better training, widespread adoption of uniform and enforceable best practices, and mandatory certification and accreditation programs. While this book provides an essential call-to-action for congress and policy makers, it also serves as a vital tool for law enforcement agencies, criminal prosecutors and attorneys, and forensic science educators. |
definition of evidence in science: Fostering Integrity in Research National Academies of Sciences, Engineering, and Medicine, Policy and Global Affairs, Committee on Science, Engineering, Medicine, and Public Policy, Committee on Responsible Science, 2018-01-13 The integrity of knowledge that emerges from research is based on individual and collective adherence to core values of objectivity, honesty, openness, fairness, accountability, and stewardship. Integrity in science means that the organizations in which research is conducted encourage those involved to exemplify these values in every step of the research process. Understanding the dynamics that support †or distort †practices that uphold the integrity of research by all participants ensures that the research enterprise advances knowledge. The 1992 report Responsible Science: Ensuring the Integrity of the Research Process evaluated issues related to scientific responsibility and the conduct of research. It provided a valuable service in describing and analyzing a very complicated set of issues, and has served as a crucial basis for thinking about research integrity for more than two decades. However, as experience has accumulated with various forms of research misconduct, detrimental research practices, and other forms of misconduct, as subsequent empirical research has revealed more about the nature of scientific misconduct, and because technological and social changes have altered the environment in which science is conducted, it is clear that the framework established more than two decades ago needs to be updated. Responsible Science served as a valuable benchmark to set the context for this most recent analysis and to help guide the committee's thought process. Fostering Integrity in Research identifies best practices in research and recommends practical options for discouraging and addressing research misconduct and detrimental research practices. |
definition of evidence in science: The Science of Reading: a Defining Guide The Reading League, 2022 Humankind's most precious treasure is our children, and our future depends on them. We recognize literacy as a fundamental human right that empowers individuals in a society. We also know that grim life outcomes are connected to illiteracy. We are resolved to prevent the collateral damage that is incurred by our students, especially the most vulnerable among them, when adults have limited access to the convergent scientific evidence. Research has yielded proven assessment and instructional practices with which every teacher and leader should be equipped. We believe that providing educators with this knowledge is a moral imperative. We are committed to evidence-aligned reading instruction being scaled with a sense of urgency in a comprehensive and systematic way by multiple stakeholders. We know that our children can be taught to read properly the first time. In a knowledge economy, the currency of the 21st century will be built on the foundation of skilled reading. Students who can read well have a place at the table of opportunity whether their aspirations lead them to preparation for college or the workforce. We believe in a future where a collective focus on applying the Science of Reading through teacher and leader preparation, classroom application, and community engagement will elevate and transform every community, every nation, through the power of literacy. |
definition of evidence in science: The Science of Stories M. Jones, E. Shanahan, M. McBeth, 2014-12-03 The study of narratives in a variety of disciplines has grown in recent years as a method of better explaining underlying concepts in their respective fields. Through the use of Narrative Policy Framework (NPF), political scientists can analyze the role narrative plays in political discourse. |
definition of evidence in science: Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices Christina V. Schwarz, Cynthia Passmore, Brian J. Reiser , 2017-01-31 When it’s time for a game change, you need a guide to the new rules. Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices provides a play-by-play understanding of the practices strand of A Framework for K–12 Science Education (Framework) and the Next Generation Science Standards (NGSS). Written in clear, nontechnical language, this book provides a wealth of real-world examples to show you what’s different about practice-centered teaching and learning at all grade levels. The book addresses three important questions: 1. How will engaging students in science and engineering practices help improve science education? 2. What do the eight practices look like in the classroom? 3. How can educators engage students in practices to bring the NGSS to life? Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices was developed for K–12 science teachers, curriculum developers, teacher educators, and administrators. Many of its authors contributed to the Framework’s initial vision and tested their ideas in actual science classrooms. If you want a fresh game plan to help students work together to generate and revise knowledge—not just receive and repeat information—this book is for you. |
definition of evidence in science: The Science of Effective Mentorship in STEMM National Academies of Sciences, Engineering, and Medicine, Policy and Global Affairs, Board on Higher Education and Workforce, Committee on Effective Mentoring in STEMM, 2020-01-24 Mentorship is a catalyst capable of unleashing one's potential for discovery, curiosity, and participation in STEMM and subsequently improving the training environment in which that STEMM potential is fostered. Mentoring relationships provide developmental spaces in which students' STEMM skills are honed and pathways into STEMM fields can be discovered. Because mentorship can be so influential in shaping the future STEMM workforce, its occurrence should not be left to chance or idiosyncratic implementation. There is a gap between what we know about effective mentoring and how it is practiced in higher education. The Science of Effective Mentorship in STEMM studies mentoring programs and practices at the undergraduate and graduate levels. It explores the importance of mentorship, the science of mentoring relationships, mentorship of underrepresented students in STEMM, mentorship structures and behaviors, and institutional cultures that support mentorship. This report and its complementary interactive guide present insights on effective programs and practices that can be adopted and adapted by institutions, departments, and individual faculty members. |
definition of evidence in science: The Great Mental Models, Volume 1 Shane Parrish, Rhiannon Beaubien, 2024-10-15 Discover the essential thinking tools you’ve been missing with The Great Mental Models series by Shane Parrish, New York Times bestselling author and the mind behind the acclaimed Farnam Street blog and “The Knowledge Project” podcast. This first book in the series is your guide to learning the crucial thinking tools nobody ever taught you. Time and time again, great thinkers such as Charlie Munger and Warren Buffett have credited their success to mental models–representations of how something works that can scale onto other fields. Mastering a small number of mental models enables you to rapidly grasp new information, identify patterns others miss, and avoid the common mistakes that hold people back. The Great Mental Models: Volume 1, General Thinking Concepts shows you how making a few tiny changes in the way you think can deliver big results. Drawing on examples from history, business, art, and science, this book details nine of the most versatile, all-purpose mental models you can use right away to improve your decision making and productivity. This book will teach you how to: Avoid blind spots when looking at problems. Find non-obvious solutions. Anticipate and achieve desired outcomes. Play to your strengths, avoid your weaknesses, … and more. The Great Mental Models series demystifies once elusive concepts and illuminates rich knowledge that traditional education overlooks. This series is the most comprehensive and accessible guide on using mental models to better understand our world, solve problems, and gain an advantage. |
definition of evidence in science: Social Science Research Anol Bhattacherjee, 2012-04-01 This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages. |
definition of evidence in science: Evidence-based Nursing Care Guidelines Betty J. Ackley, 2008-01-01 From an internationally respected team of clinical and research experts comes this groundbreaking book that synthesizes the body of nursing research for 192 common medical-surgical interventions. Ideal for both nursing students and practicing nurses, this collection of research-based guidelines helps you evaluate and apply the latest evidence to clinical practice. |
definition of evidence in science: The Concept of Evidence Peter Achinstein, 1983 This anthology presents work on major topics surrounding the concept of evidence as employed in the empirical sciences. Focusing on the classificatory concept of evidence rather than the quantitative degree of confirmation, the selections include Carl G. Hempel's satisfaction definition, R.B. Braithwaite's hypothetic-deductive view, N.R. Hanson's account of retroduction, Nelson Goodman's entrenchment theory, probability definitions discussed by Rudolf Carnap and Wesley Salmon, Clark Glymour's bootstrap theory, and a view of Achinstein's that combines probability and explanation. |
definition of evidence in science: Teaching About Evolution and the Nature of Science National Academy of Sciences, Division of Behavioral and Social Sciences and Education, Board on Science Education, Working Group on Teaching Evolution, 1998-05-06 Today many school students are shielded from one of the most important concepts in modern science: evolution. In engaging and conversational style, Teaching About Evolution and the Nature of Science provides a well-structured framework for understanding and teaching evolution. Written for teachers, parents, and community officials as well as scientists and educators, this book describes how evolution reveals both the great diversity and similarity among the Earth's organisms; it explores how scientists approach the question of evolution; and it illustrates the nature of science as a way of knowing about the natural world. In addition, the book provides answers to frequently asked questions to help readers understand many of the issues and misconceptions about evolution. The book includes sample activities for teaching about evolution and the nature of science. For example, the book includes activities that investigate fossil footprints and population growth that teachers of science can use to introduce principles of evolution. Background information, materials, and step-by-step presentations are provided for each activity. In addition, this volume: Presents the evidence for evolution, including how evolution can be observed today. Explains the nature of science through a variety of examples. Describes how science differs from other human endeavors and why evolution is one of the best avenues for helping students understand this distinction. Answers frequently asked questions about evolution. Teaching About Evolution and the Nature of Science builds on the 1996 National Science Education Standards released by the National Research Councilâ€and offers detailed guidance on how to evaluate and choose instructional materials that support the standards. Comprehensive and practical, this book brings one of today's educational challenges into focus in a balanced and reasoned discussion. It will be of special interest to teachers of science, school administrators, and interested members of the community. |
definition of evidence in science: The Oxford Handbook of the Science of Science Communication Kathleen Hall Jamieson, Dan M. Kahan, Dietram Scheufele, 2017 On topics from genetic engineering and mad cow disease to vaccination and climate change, this Handbook draws on the insights of 57 leading science of science communication scholars who explore what social scientists know about how citizens come to understand and act on what is known by science. |
definition of evidence in science: The Knowledge Gap Natalie Wexler, 2020-08-04 The untold story of the root cause of America's education crisis--and the seemingly endless cycle of multigenerational poverty. It was only after years within the education reform movement that Natalie Wexler stumbled across a hidden explanation for our country's frustrating lack of progress when it comes to providing every child with a quality education. The problem wasn't one of the usual scapegoats: lazy teachers, shoddy facilities, lack of accountability. It was something no one was talking about: the elementary school curriculum's intense focus on decontextualized reading comprehension skills at the expense of actual knowledge. In the tradition of Dale Russakoff's The Prize and Dana Goldstein's The Teacher Wars, Wexler brings together history, research, and compelling characters to pull back the curtain on this fundamental flaw in our education system--one that fellow reformers, journalists, and policymakers have long overlooked, and of which the general public, including many parents, remains unaware. But The Knowledge Gap isn't just a story of what schools have gotten so wrong--it also follows innovative educators who are in the process of shedding their deeply ingrained habits, and describes the rewards that have come along: students who are not only excited to learn but are also acquiring the knowledge and vocabulary that will enable them to succeed. If we truly want to fix our education system and unlock the potential of our neediest children, we have no choice but to pay attention. |
definition of evidence in science: The Science of Citizen Science Katrin Vohland, Anne Land-zandstra, Luigi Ceccaroni, Rob Lemmens, Josep Perelló, Marisa Ponti, Roeland Samson, Katherin Wagenknecht, 2021 This open access book discusses how the involvement of citizens into scientific endeavors is expected to contribute to solve the big challenges of our time, such as climate change and the loss of biodiversity, growing inequalities within and between societies, and the sustainability turn. The field of citizen science has been growing in recent decades. Many different stakeholders from scientists to citizens and from policy makers to environmental organisations have been involved in its practice. In addition, many scientists also study citizen science as a research approach and as a way for science and society to interact and collaborate. This book provides a representation of the practices as well as scientific and societal outcomes in different disciplines. It reflects the contribution of citizen science to societal development, education, or innovation and provides and overview of the field of actors as well as on tools and guidelines. It serves as an introduction for anyone who wants to get involved in and learn more about the science of citizen science. |
definition of evidence in science: Scientific Discovery in the Social Sciences Mark Addis, Peter C. R. Lane, Peter D. Sozou, Fernand Gobet, 2019-09-12 This volume offers selected papers exploring issues arising from scientific discovery in the social sciences. It features a range of disciplines including behavioural sciences, computer science, finance, and statistics with an emphasis on philosophy. The first of the three parts examines methods of social scientific discovery. Chapters investigate the nature of causal analysis, philosophical issues around scale development in behavioural science research, imagination in social scientific practice, and relationships between paradigms of inquiry and scientific fraud. The next part considers the practice of social science discovery. Chapters discuss the lack of genuine scientific discovery in finance where hypotheses concern the cheapness of securities, the logic of scientific discovery in macroeconomics, and the nature of that what discovery with the Solidarity movement as a case study. The final part covers formalising theories in social science. Chapters analyse the abstract model theory of institutions as a way of representing the structure of scientific theories, the semi-automatic generation of cognitive science theories, and computational process models in the social sciences. The volume offers a unique perspective on scientific discovery in the social sciences. It will engage scholars and students with a multidisciplinary interest in the philosophy of science and social science. |
definition of evidence in science: Strengthening a Workforce for Innovative Regulatory Science in Therapeutics Development Institute of Medicine, Board on Health Sciences Policy, Forum on Drug Discovery, Development, and Translation, 2012-04-04 The development and application of regulatory science - which FDA has defined as the science of developing new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of FDA-regulated products - calls for a well-trained, scientifically engaged, and motivated workforce. FDA faces challenges in retaining regulatory scientists and providing them with opportunities for professional development. In the private sector, advancement of innovative regulatory science in drug development has not always been clearly defined, well coordinated, or connected to the needs of the agency. As a follow-up to a 2010 workshop, the IOM held a workshop on September 20-21, 2011, to provide a format for establishing a specific agenda to implement the vision and principles relating to a regulatory science workforce and disciplinary infrastructure as discussed in the 2010 workshop. |
definition of evidence in science: The Varieties of Scientific Experience Carl Sagan, 2006-11-02 “Ann Druyan has unearthed a treasure. It is a treasure of reason, compassion, and scientific awe. It should be the next book you read.” —Sam Harris, author of The End of Faith “A stunningly valuable legacy left to all of us by a great human being. I miss him so.” —Kurt Vonnegut Carl Sagan's prophetic vision of the tragic resurgence of fundamentalism and the hope-filled potential of the next great development in human spirituality The late great astronomer and astrophysicist describes his personal search to understand the nature of the sacred in the vastness of the cosmos. Exhibiting a breadth of intellect nothing short of astounding, Sagan presents his views on a wide range of topics, including the likelihood of intelligent life on other planets, creationism and so-called intelligent design, and a new concept of science as informed worship. Originally presented at the centennial celebration of the famous Gifford Lectures in Scotland in 1985 but never published, this book offers a unique encounter with one of the most remarkable minds of the twentieth century. |
definition of evidence in science: United States Attorneys' Manual United States. Department of Justice, 1985 |
definition of evidence in science: Scientific Explanation Philip Kitcher, Wesley C. Salmon, 1962-05-25 Scientific Explanation was first published in 1962. Minnesota Archive Editions uses digital technology to make long-unavailable books once again accessible, and are published unaltered from the original University of Minnesota Press editions. Is a new consensus emerging in the philosophy of science? The nine distinguished contributors to this volume apply that question to the realm of scientific explanation and, although their conclusions vary, they agree in one respect: there definitely was an old consensus. Co-editor Wesley Salmon's opening essay, Four Decades of Scientific Explanation, grounds the entire discussion. His point of departure is the founding document of the old consensus: a 1948 paper by Carl G. Hempel and Paul Oppenheim, Studies in the Logic of Explanation, that set forth, with remarkable clarity, a mode of argument that came to be known as the deductive-nomological model. This approach, holding that explanation dies not move beyond the sphere of empirical knowledge, remained dominant during the hegemony of logical empiricism from 1950 to 1975. Salmon traces in detail the rise and breakup of the old consensus, and examines the degree to which there is, if not a new consensus, at least a kind of reconciliation on this issue among contemporary philosophers of science and clear agreement that science can indeed tell us why. The other contributors, in the order of their presentations, are: Peter Railton, Matti Sintonen, Paul W. Humphreys, David Papineau, Nancy Cartwright, James Woodward, Merrilee H. Salmon, and Philip Kitcher. |
definition of evidence in science: The Science of Science Dashun Wang, Albert-László Barabási, 2021-03-25 This is the first comprehensive overview of the exciting field of the 'science of science'. With anecdotes and detailed, easy-to-follow explanations of the research, this book is accessible to all scientists, policy makers, and administrators with an interest in the wider scientific enterprise. |
definition of evidence in science: Scientific Research in Education National Research Council, Division of Behavioral and Social Sciences and Education, Center for Education, Committee on Scientific Principles for Education Research, 2002-03-28 Researchers, historians, and philosophers of science have debated the nature of scientific research in education for more than 100 years. Recent enthusiasm for evidence-based policy and practice in educationâ€now codified in the federal law that authorizes the bulk of elementary and secondary education programsâ€have brought a new sense of urgency to understanding the ways in which the basic tenets of science manifest in the study of teaching, learning, and schooling. Scientific Research in Education describes the similarities and differences between scientific inquiry in education and scientific inquiry in other fields and disciplines and provides a number of examples to illustrate these ideas. Its main argument is that all scientific endeavors share a common set of principles, and that each fieldâ€including education researchâ€develops a specialization that accounts for the particulars of what is being studied. The book also provides suggestions for how the federal government can best support high-quality scientific research in education. |
definition of evidence in science: From So Simple a Beginning Charles Darwin, 2010-08-31 Hailed as superior by Nature, this landmark volume is available in a collectible, boxed edition. Never before have the four great works of Charles Darwin—Voyage of the H.M.S. Beagle (1845), The Origin of Species (1859), The Descent of Man (1871), and The Expression of Emotions in Man and Animals (1872)—been collected under one cover. Undertaking this challenging endeavor 123 years after Darwin's death, two-time Pulitzer Prize winner Edward O. Wilson has written an introductory essay for the occasion, while providing new, insightful introductions to each of the four volumes and an afterword that examines the fate of evolutionary theory in an era of religious resistance. In addition, Wilson has crafted a creative new index to accompany these four texts, which links the nineteenth-century, Darwinian evolutionary concepts to contemporary biological thought. Beautifully slipcased, and including restored versions of the original illustrations, From So Simple a Beginning turns our attention to the astounding power of the natural creative process and the magnificence of its products. |
definition of evidence in science: The Scientific Attitude Lee McIntyre, 2019-05-07 An argument that what makes science distinctive is its emphasis on evidence and scientists' willingness to change theories on the basis of new evidence. Attacks on science have become commonplace. Claims that climate change isn't settled science, that evolution is “only a theory,” and that scientists are conspiring to keep the truth about vaccines from the public are staples of some politicians' rhetorical repertoire. Defenders of science often point to its discoveries (penicillin! relativity!) without explaining exactly why scientific claims are superior. In this book, Lee McIntyre argues that what distinguishes science from its rivals is what he calls “the scientific attitude”—caring about evidence and being willing to change theories on the basis of new evidence. The history of science is littered with theories that were scientific but turned out to be wrong; the scientific attitude reveals why even a failed theory can help us to understand what is special about science. McIntyre offers examples that illustrate both scientific success (a reduction in childbed fever in the nineteenth century) and failure (the flawed “discovery” of cold fusion in the twentieth century). He describes the transformation of medicine from a practice based largely on hunches into a science based on evidence; considers scientific fraud; examines the positions of ideology-driven denialists, pseudoscientists, and “skeptics” who reject scientific findings; and argues that social science, no less than natural science, should embrace the scientific attitude. McIntyre argues that the scientific attitude—the grounding of science in evidence—offers a uniquely powerful tool in the defense of science. |
definition of evidence in science: Scientific Evidence in Criminal Cases Andre A. Moenssens, Ray Edward Moses, Fred E. Inbau, 1973 |
definition of evidence in science: The Sourcebook for Teaching Science, Grades 6-12 Norman Herr, 2008-08-11 The Sourcebook for Teaching Science is a unique, comprehensive resource designed to give middle and high school science teachers a wealth of information that will enhance any science curriculum. Filled with innovative tools, dynamic activities, and practical lesson plans that are grounded in theory, research, and national standards, the book offers both new and experienced science teachers powerful strategies and original ideas that will enhance the teaching of physics, chemistry, biology, and the earth and space sciences. |
definition of evidence in science: The Pig Book Citizens Against Government Waste, 2013-09-17 The federal government wastes your tax dollars worse than a drunken sailor on shore leave. The 1984 Grace Commission uncovered that the Department of Defense spent $640 for a toilet seat and $436 for a hammer. Twenty years later things weren't much better. In 2004, Congress spent a record-breaking $22.9 billion dollars of your money on 10,656 of their pork-barrel projects. The war on terror has a lot to do with the record $413 billion in deficit spending, but it's also the result of pork over the last 18 years the likes of: - $50 million for an indoor rain forest in Iowa - $102 million to study screwworms which were long ago eradicated from American soil - $273,000 to combat goth culture in Missouri - $2.2 million to renovate the North Pole (Lucky for Santa!) - $50,000 for a tattoo removal program in California - $1 million for ornamental fish research Funny in some instances and jaw-droppingly stupid and wasteful in others, The Pig Book proves one thing about Capitol Hill: pork is king! |
definition of evidence in science: Conjectures and Refutations Karl Popper, 2014-05-01 Conjectures and Refutations is one of Karl Popper's most wide-ranging and popular works, notable not only for its acute insight into the way scientific knowledge grows, but also for applying those insights to politics and to history. It provides one of the clearest and most accessible statements of the fundamental idea that guided his work: not only our knowledge, but our aims and our standards, grow through an unending process of trial and error. |
definition of evidence in science: Climate Change The Royal Society, National Academy of Sciences, 2014-02-26 Climate Change: Evidence and Causes is a jointly produced publication of The US National Academy of Sciences and The Royal Society. Written by a UK-US team of leading climate scientists and reviewed by climate scientists and others, the publication is intended as a brief, readable reference document for decision makers, policy makers, educators, and other individuals seeking authoritative information on the some of the questions that continue to be asked. Climate Change makes clear what is well-established and where understanding is still developing. It echoes and builds upon the long history of climate-related work from both national academies, as well as on the newest climate-change assessment from the United Nations' Intergovernmental Panel on Climate Change. It touches on current areas of active debate and ongoing research, such as the link between ocean heat content and the rate of warming. |
definition of evidence in science: Encyclopedia of Library and Information Science Allen Kent, 1987-02-26 The Encyclopedia of Library and Information Science provides an outstanding resource in 33 published volumes with 2 helpful indexes. This thorough reference set--written by 1300 eminent, international experts--offers librarians, information/computer scientists, bibliographers, documentalists, systems analysts, and students, convenient access to the techniques and tools of both library and information science. Impeccably researched, cross referenced, alphabetized by subject, and generously illustrated, the Encyclopedia of Library and Information Science integrates the essential theoretical and practical information accumulating in this rapidly growing field. |
DEFINITION Definition & Meaning - Merriam-Webster
The meaning of DEFINITION is a statement of the meaning of a word or word group or a sign or symbol. How to use definition in a sentence.
DEFINITION Definition & Meaning - Dictionary.com
Definition definition: the act of defining, or of making something definite, distinct, or clear.. See examples of DEFINITION used in a sentence.
DEFINITION | English meaning - Cambridge Dictionary
DEFINITION definition: 1. a statement that explains the meaning of a word or phrase: 2. a description of the features and…. Learn more.
DEFINITION definition and meaning | Collins English Dictionary
A definition is a statement giving the meaning of a word or expression, especially in a dictionary.
definition noun - Definition, pictures, pronunciation and usage …
Definition of definition noun in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Definition - Wikipedia
A nominal definition is the definition explaining what a word means (i.e., which says what the "nominal essence" is), and is definition in the classical sense as given above. A real definition, …
Definition - definition of definition by The Free Dictionary
Here is one definition from a popular dictionary: 'Any instrument or organization by which power is applied and made effective, or a desired effect produced.' Well, then, is not a man a machine?
definition - Wiktionary, the free dictionary
Jun 8, 2025 · definition (countable and uncountable, plural definitions) ( semantics , lexicography ) A statement of the meaning of a word , word group, sign , or symbol ; especially, a dictionary …
Definition Definition & Meaning | Britannica Dictionary
DEFINITION meaning: 1 : an explanation of the meaning of a word, phrase, etc. a statement that defines a word, phrase, etc.; 2 : a statement that describes what something is
Dictionary.com | Meanings & Definitions of English Words
3 days ago · The world's leading online dictionary: English definitions, synonyms, word origins, example sentences, word games, and more. A trusted authority for 25+ years!
DEFINITION Definition & Meaning - Merriam-Webster
The meaning of DEFINITION is a statement of the meaning of a word or word group or a sign or symbol. How to use definition in a sentence.
DEFINITION Definition & Meaning - Dictionary.com
Definition definition: the act of defining, or of making something definite, distinct, or clear.. See examples of DEFINITION used in a sentence.
DEFINITION | English meaning - Cambridge Dictionary
DEFINITION definition: 1. a statement that explains the meaning of a word or phrase: 2. a description of the features and…. Learn more.
DEFINITION definition and meaning | Collins English Dictionary
A definition is a statement giving the meaning of a word or expression, especially in a dictionary.
definition noun - Definition, pictures, pronunciation and usage …
Definition of definition noun in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.
Definition - Wikipedia
A nominal definition is the definition explaining what a word means (i.e., which says what the "nominal essence" is), and is definition in the classical sense as given above. A real definition, …
Definition - definition of definition by The Free Dictionary
Here is one definition from a popular dictionary: 'Any instrument or organization by which power is applied and made effective, or a desired effect produced.' Well, then, is not a man a machine?
definition - Wiktionary, the free dictionary
Jun 8, 2025 · definition (countable and uncountable, plural definitions) ( semantics , lexicography ) A statement of the meaning of a word , word group, sign , or symbol ; especially, a dictionary …
Definition Definition & Meaning | Britannica Dictionary
DEFINITION meaning: 1 : an explanation of the meaning of a word, phrase, etc. a statement that defines a word, phrase, etc.; 2 : a statement that describes what something is
Dictionary.com | Meanings & Definitions of English Words
3 days ago · The world's leading online dictionary: English definitions, synonyms, word origins, example sentences, word games, and more. A trusted authority for 25+ years!